【題目】如圖所示,點、、在同一直線上,是的平分線,,,.
(1)求的度數(shù)(請寫出解題過程).
(2)如以為一邊,在的外部畫,問邊與邊成一直線嗎?請說明理由.
【答案】(1);(2)邊與邊成一直線,理由詳見解析.
【解析】
(1)因為OE是∠BOC的平分線所以∠BOC=2∠2,再根據(jù)點A、O、C在一直線上,求出∠1和∠2關(guān)于x的關(guān)系式,列出等式求出x的值;
(2)根據(jù)∠EOF=∠EOC+∠COF=90°和∠EOC=∠BOC,∠FOC=∠DOC,∠BOC+∠DOC=90°,得出∠BOC+∠DOC=180°,進而可可判斷邊OD與邊OB成一直線.
(1)因為是的平分線,所以,
因為點、、在同一直線上,所以,
又因為,,
所以,
解得:,
(2)邊與邊成一直線.
理由:因為,
又因為,.
∴,
即,所以點、、在同一直線上,即邊與邊成一直線.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,平分交于點,于點,下列結(jié)論:①;②;③;④點在線段的垂直平分線上,其中正確的個數(shù)有( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分)
為了加強學(xué)生課外閱讀,開闊視野,某校開展了“書香校園,從我做起”的主題活動.學(xué)校隨機抽取了部分學(xué)生,對他們一周的課外閱讀時間進行調(diào)查,繪制出頻數(shù)分布表和頻數(shù)分布直方圖的一部分如下:
請根據(jù)圖表信息回答下列問題:
(1)頻數(shù)分布表中的 , ;
(2)將頻數(shù)分布直方圖補充完整;
(3)學(xué)校將每周課外閱讀時間在小時以上的學(xué)生評為“閱讀之星”,請你估計該校名學(xué)生中評為“閱讀之星”的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,Rt△ABC中,∠BAC=90°,點D是線段AC的中點,連接BD并延長至點E,使BE=2BD.連接AE,CE.
(1)求證:四邊形ABCE是平行四邊形;
(2)如圖2所示,將三角板頂點M放在AE邊上,兩條直角邊分別過點B和點C,若∠MEC=∠EMC,BM交AC于點N.求證:△ABN≌△MCN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AC為直徑作交BC于點D,過點D作FE⊥AB于點E,交AC的延長線于點F.
(1)求證: EF與相切;
(2)若AE=6,,求EB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為正方形ABCD的邊BC上一動點(P與B、C不重合),連接AP,過點B作BQ⊥AP交CD于點Q,將△BQC沿BQ所在的直線對折得到△BQC′,延長QC′交BA的延長線于點M.
(1)試探究AP與BQ的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)當(dāng)AB=3,BP=2PC,求QM的長;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線AB∥CD,直線EF交AB于點E,交CD于點F,點G和點H分別是直線AB和CD上的動點,作直線GH,EI平分∠AEF,HI平分∠CHG,EI與HI交于點I.
(1)如圖,點G在點E的左側(cè),點H在點F的右側(cè),若∠AEF=70°,∠CHG=60°,求∠ETH的度數(shù).
(2)如圖,點G在點E的右側(cè),點H也在點F的右側(cè),若∠AEF=,∠CHG=β,其他條件不變,求∠ETH的度數(shù).
(3)如圖,點G在點E的右側(cè),點H也在點F的右側(cè),∠GHC的平分線HJ交∠KEG的平分線EJ于點J.其他條件不變,若∠AEF=,∠CHG=β,求∠EJH的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形中,點為邊上一點, 和交于點,已知的面積等于6, 的面積等于4,則四邊形的面積等于__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過坐標(biāo)原點O和x軸上另一點E,頂點M的坐標(biāo)為(2,4);矩形ABCD的頂點A與點O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3.
(1)求該拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)將矩形ABCD以每秒1個單位長度的速度從如圖所示的位置沿x軸的正方向勻速平行移動,同時一動點P也以相同的速度從點A出發(fā)向B勻速移動,設(shè)它們運動的時間為t秒(0≤t≤3),直線AB與該拋物線的交點為N(如圖2所示).
①當(dāng)t=時,判斷點P是否在直線ME上,并說明理由;
②設(shè)以P、N、C、D為頂點的多邊形面積為S,試問S是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com