【題目】如圖,已知頂點為(﹣3,﹣6)的拋物線y=ax2+bx+c經過點(﹣1,﹣4),則下列結論中錯誤的是( )
A.b2>4ac
B.ax2+bx+c≥﹣6
C.若點(﹣2,m),(﹣5,n)在拋物線上,則m>n
D.關于x的一元二次方程ax2+bx+c=﹣4的兩根為﹣5和﹣1
【答案】C
【解析】解:A、圖象與x軸有兩個交點,方程ax2+bx+c=0有兩個不相等的實數(shù)根,b2﹣4ac>0所以b2>4ac,故A選項正確; B、拋物線的開口向上,函數(shù)有最小值,因為拋物線的最小值為﹣6,所以ax2+bx+c≥﹣6,故B選項正確;
C、拋物線的對稱軸為直線x=﹣3,因為﹣5離對稱軸的距離大于﹣2離對稱軸的距離,所以m<n,故C選項錯誤;
D、根據拋物線的對稱性可知,(﹣1,﹣4)關于對稱軸的對稱點為(﹣5,﹣4),所以關于x的一元二次方程ax2+bx+c=﹣4的兩根為﹣5和﹣1,故D選項正確.
故選C.
【考點精析】本題主要考查了二次函數(shù)圖象以及系數(shù)a、b、c的關系和拋物線與坐標軸的交點的相關知識點,需要掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關:對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標:(0,c);一元二次方程的解是其對應的二次函數(shù)的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當b2-4ac>0時,圖像與x軸有兩個交點;當b2-4ac=0時,圖像與x軸有一個交點;當b2-4ac<0時,圖像與x軸沒有交點.才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在四邊形ABCD中,AD∥BC,AD=24cm,BC=30cm,點P從A向點D以1cm/s的速度運動,到點D即停止.點Q從點C向點B以2cm/s的速度運動,到點B即停止.直線PQ將四邊形ABCD截得兩個四邊形,分別為四邊形ABQP和四邊形PQCD,則當P,Q兩點同時出發(fā),幾秒后所截得兩個四邊形中,其中一個四邊形為平行四邊形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“保護好環(huán)境,拒絕冒黑煙”.某市公交公司將淘汰某一條線路上“冒黑煙”較嚴重的公交車,計劃購買A型和B型兩種環(huán)保節(jié)能公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元.
(1)求購買A型和B型公交車每輛各需多少萬元?
(2)預計在該線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1200萬元,且確保這10輛公交車在該線路的年均載客總和不少于680萬人次,則該公司有哪幾種購車方案?哪種購車方案總費用最少?最少總費用是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知數(shù)軸上兩點A、B對應的數(shù)分別為﹣2、5,點P為數(shù)軸上的一動點,其對應的數(shù)為x.
(1)PA= ;PB= (用含x的式子表示)
(2)在數(shù)軸上是否存在點P,使PA+PB=10?若存在,請直接寫出x的值;若不存在,請說明理由.
(3)如圖2,點P以2個單位/s的速度從點O向右運動,同時點A以4個單位/s的速度向左運動,點B以16個單位/s的速度向右運動,在運動過程中,M、N分別是AP、OB的中點,問: 的值是否發(fā)生變化?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下表記錄的是今年長江某一周內的水位變化情況,這一周的上周末的水位已達到警戒水位米(正號表示水位比前一天上升,負號表示水位比前一天下降).
星期 | 一 | 二 | 三 | 四 | 五 | 六 |
水位 變化(米) | +0.2 | -0.4 | +0.3 |
(1)本周哪一天長江的水位最高?位于警戒水位之上還是之下?
(2)與上周周末相比,本周周末長江的水位是上升了還是下降了?并通過計算說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】骰子是一種特別的數(shù)字立方體(見右圖),它符合規(guī)則:相對兩面的點數(shù)之和總是7,下面四幅圖中可以折成符合規(guī)則的骰子的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+mx+3與x軸交于A,B兩點,與y軸交于點C,點B的坐標為(3,0)
(1)求m的值及拋物線的頂點坐標.
(2)點P是拋物線對稱軸l上的一個動點,當PA+PC的值最小時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四邊形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分別為點E,F.
(1)求證:△ADE≌△CBF;
(2)若AC與BD相交于點O,求證:AO=CO.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com