【題目】如圖1,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),長(zhǎng)方形OACB的頂點(diǎn)A、B分別在x軸與y軸上,已知OA=6,OB=10.點(diǎn)Dy軸上一點(diǎn),其坐標(biāo)為(0,2),點(diǎn)P從點(diǎn)A出發(fā)以每秒2個(gè)單位的速度沿線段AC﹣CB的方向運(yùn)動(dòng),當(dāng)點(diǎn)P與點(diǎn)B重合時(shí)停止運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.

(1)當(dāng)點(diǎn)P經(jīng)過(guò)點(diǎn)C時(shí),求直線DP的函數(shù)解析式;

(2)①求△OPD的面積S關(guān)于t的函數(shù)解析式;

②如圖②,把長(zhǎng)方形沿著OP折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)B′恰好落在AC邊上,求點(diǎn)P的坐標(biāo).

(3)點(diǎn)P在運(yùn)動(dòng)過(guò)程中是否存在使△BDP為等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)y=x+2;(2)y=x+2;(2)S=﹣2t+16,②點(diǎn)P的坐標(biāo)是(,10);(3)存在,滿(mǎn)足題意的P坐標(biāo)為(6,6)或(6,2+2)或(6,10﹣2).

【解析】分析:(1)設(shè)直線DP解析式為y=kx+b,將D與B坐標(biāo)代入求出k與b的值,即可確定出解析式;
(2)①當(dāng)P在AC段時(shí),三角形ODP底OD與高為固定值,求出此時(shí)面積;當(dāng)P在BC段時(shí),底邊OD為固定值,表示出高,即可列出S與t的關(guān)系式;
設(shè)P(m,10),則PB=PB′=m,根據(jù)勾股定理求出m的值,求出此時(shí)P坐標(biāo)即可;
(3)存在,分別以BD,DP,BP為底邊三種情況考慮,利用勾股定理及圖形與坐標(biāo)性質(zhì)求出P坐標(biāo)即可.

詳解:(1)如圖1,

∵OA=6,OB=10,四邊形OACB為長(zhǎng)方形,

∴C(6,10).

設(shè)此時(shí)直線DP解析式為y=kx+b,

把(0,2),C(6,10)分別代入,得

,解得

則此時(shí)直線DP解析式為y=x+2;

(2)①當(dāng)點(diǎn)P在線段AC上時(shí),OD=2,高為6,S=6;

當(dāng)點(diǎn)P在線段BC上時(shí),OD=2,高為6+10﹣2t=16﹣2t,S=×2×(16﹣2t)=﹣2t+16;

②設(shè)P(m,10),則PB=PB′=m,如圖2,

∵OB′=OB=10,OA=6,

∴AB′==8,

∴B′C=10﹣8=2,

∵PC=6﹣m,

∴m2=22+(6﹣m)2,解得m=

則此時(shí)點(diǎn)P的坐標(biāo)是(,10);

(3)存在,理由為:

若△BDP為等腰三角形,分三種情況考慮:如圖3,

①當(dāng)BD=BP1=OB﹣OD=10﹣2=8,

Rt△BCP1中,BP1=8,BC=6,

根據(jù)勾股定理得:CP1==2,

∴AP1=10﹣2,即P1(6,10﹣2);

②當(dāng)BP2=DP2時(shí),此時(shí)P2(6,6);

③當(dāng)DB=DP3=8時(shí),

Rt△DEP3中,DE=6,

根據(jù)勾股定理得:P3E==2,

∴AP3=AE+EP3=2+2,即P3(6,2+2),

綜上,滿(mǎn)足題意的P坐標(biāo)為(6,6)或(6,2+2)或(6,10﹣2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】建立適當(dāng)?shù)淖鴺?biāo)系,運(yùn)用函數(shù)知識(shí)解決下面的問(wèn)題:

如圖,是某條河上的一座拋物線形拱橋,拱橋頂部點(diǎn)E到橋下水面的距離EF3米時(shí),水面寬AB6米,一場(chǎng)大雨過(guò)后,河水上漲,水面寬度變?yōu)?/span>CD,且CD=2米,此時(shí)水位上升了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,CA=CBCD=CE,∠ACB=DCE

1)求證:BE=AD

2)當(dāng)α=90°時(shí),取AD,BE的中點(diǎn)分別為點(diǎn)P、Q,連接CP,CQ,PQ,如圖②,判斷CPQ的形狀,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的圖象(折線)描述了一輛汽車(chē)在某一直線上的行駛過(guò)程中,汽車(chē)離出發(fā)地的距離(千米)與行駛時(shí)間(時(shí))之間的函數(shù)關(guān)系,根據(jù)圖中提供的信息,給出下列說(shuō)法:①汽車(chē)共行駛了140千米;②汽車(chē)在行駛途中停留了1小時(shí);③汽車(chē)在整個(gè)行駛過(guò)程中的平均速度為30千米/時(shí);④汽車(chē)出發(fā)后6小時(shí)至9小時(shí)之間行駛的速度在逐漸減小.其中正確的說(shuō)法共有( )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直線與直線、分別交于點(diǎn)、,互補(bǔ).

(1)試判斷直線與直線的位置關(guān)系,并說(shuō)明理由.

(2)如圖2,的角平分線交于點(diǎn)交于點(diǎn),點(diǎn)上一點(diǎn),且,求證:.

(3)如圖3,在(2)的條件下,連接上一點(diǎn)使,作平分,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,四邊形中,,點(diǎn)點(diǎn)出發(fā),沿折線運(yùn)動(dòng),到點(diǎn)時(shí)停止,已知的面積與點(diǎn)運(yùn)動(dòng)的路程的函數(shù)圖象如圖②所示,則點(diǎn)從開(kāi)始到停止運(yùn)動(dòng)的總路程為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD中,AE平分∠BAD,交BC于點(diǎn)E,且ABAE,延長(zhǎng)ABDE的延長(zhǎng)線交于點(diǎn)F.下列結(jié)論中:①△ABC≌△AED;②△ABE是等邊三角形;③ADAF;④SABESCDE;⑤SABESCEF.其中正確的是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖已知:E是AOB的平分線上一點(diǎn),ECOA,EDOB,垂足分別為C、D.求證:

(1)ECD=EDC;

(2)OE是CD的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,作,垂足為F,延長(zhǎng)DF交邊AB于點(diǎn)E,在圖中一定和DFC相似的三角形個(gè)數(shù)是_______個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案