【題目】如圖,已知拋物線y1=﹣2x2+2,直線y2=2x+2,當x任取一值時,x對應(yīng)的函數(shù)值分別為y1、y2 . 若y1≠y2 , 取y1、y2中的較小值記為M;若y1=y2 , 記M=y1=y2 . 例如:當x=1時,y1=0,y2=4,y1<y2 , 此時M=0.下列判斷:
①當x>0時,y1>y2;
②當x<0時,x值越大,M值越。
③使得M大于2的x值不存在;
④使得M=1的x值是﹣
其中正確的是( )

A.①②
B.①④
C.②③
D.③④

【答案】D
【解析】解:∵當x>0時,利用函數(shù)圖象可以得出y2>y1;∴①錯誤;
∵拋物線y1=﹣2x2+2,直線y2=2x+2,當x任取一值時,x對應(yīng)的函數(shù)值分別為y1、y2 . 若y1≠y2 , 取y1、y2中的較小值記為M;
∴當x<0時,根據(jù)函數(shù)圖象可以得出x值越大,M值越大;∴②錯誤;
∵拋物線y1=﹣2x2+2,直線y2=2x+2,與y軸交點坐標為:(0,2),當x=0時,M=2,拋物線y1=﹣2x2+2,最大值為2,故M大于2的x值不存在;
∴使得M大于2的x值不存在,∴③正確;
∵當﹣1<x<0時,
使得M=1時,可能是y1=﹣2x2+2=1,解得:x1= ,x2=﹣ ,
當y2=2x+2=1,解得:x=﹣ ,
由圖象可得出:當x= >0,此時對應(yīng)y1=M,
∵拋物線y1=﹣2x2+2與x軸交點坐標為:(1,0),(﹣1,0),
∴當﹣1<x<0,此時對應(yīng)y2=M,
故M=1時,x1= ,x2=﹣ ,
使得M=1的x值是﹣ .∴④正確;
故正確的有:③④.
故選:D.
【考點精析】利用二次函數(shù)的性質(zhì)對題目進行判斷即可得到答案,需要熟知增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,∠C=90°,AC=BC.作射線AP,過點BBDAP于點D,連接CD.

(1)當射線AP位于圖1所示的位置時

①根據(jù)題意補全圖形;

②求證:AD+BD=CD.

(2)當射線AP繞點A由圖1的位置順時針旋轉(zhuǎn)至∠BAC的內(nèi)部,如圖2,直接寫出此時AD,BD,CD三條線段之間的數(shù)量關(guān)系為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小蘇和小林在如圖所示的跑道上進行4×50米折返跑.在整個過程中,跑步者距起跑線的距離y(單位:m)與跑步時間t(單位:s)的對應(yīng)關(guān)系如下圖所示.下列敘述正確的是(

A. 兩人從起跑線同時出發(fā),同時到達終點

B. 小蘇跑全程的平均速度大于小林跑全程的平均速度

C. 小蘇前15s跑過的路程大于小林前15s跑過的路程

D. 小林在跑最后100m的過程中,與小蘇相遇2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知ADBC,ABEF,CDEG,且點E在直線AD,F,H,G在直線BCEH平分FEG,∠A=∠D=110°,線段EH的長是不是兩條平行線ADBC之間的距離?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一張圓心角為45°的扇形紙板和圓形紙板按如圖方式分別剪成一個正方形,邊長都為1,則扇形和圓形紙板的面積比是(
A.5:4
B.5:2
C. :2
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖像分別與軸、軸交于點,以線段為邊在第一象限內(nèi)作等腰直角三角形,則過、兩點的直線對應(yīng)的函數(shù)表達式為________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2012義烏市)在銳角△ABC中,AB=4,BC=5,∠ACB=45°,將△ABC繞點B按逆時針方向旋轉(zhuǎn),得到△A1BC1
(1)如圖1,當點C1在線段CA的延長線上時,求∠CC1A1的度數(shù);
(2)如圖2,連接AA1 , CC1 . 若△ABA1的面積為4,求△CBC1的面積;
(3)如圖3,點E為線段AB中點,點P是線段AC上的動點,在△ABC繞點B按逆時針方向旋轉(zhuǎn)過程中,點P的對應(yīng)點是點P1 , 求線段EP1長度的最大值與最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,AD是高,BE是中線,CF是角平分線,CFAD于點G,交BE于點H,下面說法中正確的序號是_____

①△ABE的面積等于△BCE的面積;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、B、C、D四個點均在⊙O上,∠AOD=70°,AO∥DC,則∠B的度數(shù)為(
A.40°
B.45°
C.50°
D.55°

查看答案和解析>>

同步練習冊答案