【題目】如圖,拋物線y=x2﹣2x﹣3與x軸交于點(diǎn)A(﹣1,0),點(diǎn)B(3,0),與y軸交于點(diǎn)C,點(diǎn)D是該拋物線的頂點(diǎn),連接AD,BD.
(1)直接寫出點(diǎn)C、D的坐標(biāo);
(2)求△ABD的面積;
(3)點(diǎn)P是拋物線上的一動(dòng)點(diǎn),若△ABP的面積是△ABD面積的,求點(diǎn)P的坐標(biāo).
【答案】(1)D(1,﹣4);(2)8;(3)(1+,2)、(1﹣,2)、(1+,﹣2)、(1﹣,﹣2).
【解析】
(1)利用拋物線與y軸交點(diǎn)求法得出C點(diǎn)坐標(biāo),再利用配方法求出其頂點(diǎn)坐標(biāo);
(2)利用D點(diǎn)坐標(biāo)得出△ABD的面積;
(3)利用△ABD的面積得出△ABP的面積,進(jìn)而求出P點(diǎn)縱坐標(biāo),進(jìn)而求出其橫坐標(biāo).
解:(1)當(dāng)x=0,則y=﹣3,
故C(0,﹣3),
y=x2﹣2x﹣3
=(x﹣1)2﹣4,
故D(1,﹣4);
(2)∵點(diǎn)A(﹣1,0),點(diǎn)B(3,0),
∴AB=4,
∴S△ABD=×4×4=8;
(3)∵△ABP的面積是△ABD面積的,
∴S△ABP=4,
∵AB=4,
∴P點(diǎn)縱坐標(biāo)為2或﹣2,
當(dāng)P點(diǎn)縱坐標(biāo)為2,則2=x2﹣2x﹣3,
解得:x1=1+,x2=1﹣,
此時(shí)P點(diǎn)坐標(biāo)為:(1+,2)或(1﹣,2),
當(dāng)P點(diǎn)縱坐標(biāo)為﹣2,則﹣2=x2﹣2x﹣3,
解得:x1=1+,x2=1﹣,
此時(shí)P點(diǎn)坐標(biāo)為:(1+,﹣2)或(1﹣,﹣2),
綜上所述:點(diǎn)P坐標(biāo)為:(1+,2)、(1﹣,2)、(1+,﹣2)、(1﹣,﹣2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,P是對(duì)角線BD上的一點(diǎn),點(diǎn)E在AD的延長(zhǎng)線上,且PA=PE,PE交CD于F.
(1)證明:PC=PE;
(2)求∠CPE的度數(shù);
(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當(dāng)∠ABC=120°時(shí),連接CE,試探究線段AP與線段CE的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC為弦,點(diǎn)D是弧BC的中點(diǎn),過點(diǎn)D作⊙O的切線交AC的延長(zhǎng)線于點(diǎn)E.
(1)判斷DE與AE的位置關(guān)系,并說明理由;
(2)求證:AB=AE+CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),直線與拋物線交于A、C兩點(diǎn),其中C點(diǎn)的橫坐標(biāo)為2.
(1)求A、B兩點(diǎn)的坐標(biāo)及直線AC的函數(shù)表達(dá)式;
(2)P是線段AC上的一個(gè)動(dòng)點(diǎn),過P點(diǎn)作y軸的平行線交拋物線于E點(diǎn),求線段PE長(zhǎng)度的最大值;
(3)點(diǎn)G是拋物線上的動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使A、C、F、G這樣的四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點(diǎn)坐標(biāo);如果不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=-x+3與x軸、y軸分別交于A,B兩點(diǎn),拋物線y=-x2+bx+c經(jīng)過A,B兩點(diǎn),點(diǎn)P在線段OA上,從點(diǎn)O出發(fā),向點(diǎn)A以1個(gè)單位/秒的速度勻速運(yùn)動(dòng);同時(shí),點(diǎn)Q在線段AB上,從點(diǎn)A出發(fā),向點(diǎn)B以個(gè)單位/秒的速度勻速運(yùn)動(dòng),連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求拋物線的解析式;
(2)問:當(dāng)t為何值時(shí),△APQ為直角三角形;
(3)過點(diǎn)P作PE∥y軸,交AB于點(diǎn)E,過點(diǎn)Q作QF∥y軸,交拋物線于點(diǎn)F,連接EF,當(dāng)EF∥PQ時(shí),求點(diǎn)F的坐標(biāo);
(4)設(shè)拋物線頂點(diǎn)為M,連接BP,BM,MQ,問:是否存在t的值,使以B,Q,M為頂點(diǎn)的三角形與以O,B,P為頂點(diǎn)的三角形相似?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ACB=60○,半徑為2的⊙0切BC于點(diǎn)C,若將⊙O在CB上向右滾動(dòng),則當(dāng)滾動(dòng)到⊙O與CA也相切時(shí),圓心O移動(dòng)的水平距離為 ( )
A. 2π B. 4π C. D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.如圖1,在平面直角坐標(biāo)系xoy中,M是x軸正半軸上一點(diǎn),⊙M與x軸的正半軸交于A,B兩點(diǎn),A在B的左側(cè),且OA,OB的長(zhǎng)是方程x2-12x+27=0的兩根,ON是⊙M的切線,N為切點(diǎn),N在第四象限.
(1)求⊙M的直徑的長(zhǎng).
(2)如圖2,將△ONM沿ON翻轉(zhuǎn)180°至△ONG,求證△OMG是等邊三角形.
(3)求直線ON的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+2(m+1)x+m21=0.
(1)若方程有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍;
(2)若方程兩實(shí)數(shù)根分別為x1,x2,且滿足x1+x2+x1x2=5,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于,兩點(diǎn),與軸交于點(diǎn),點(diǎn)是拋物線的頂點(diǎn).
(1)求拋物線的解析式.
(2)點(diǎn)是軸負(fù)半軸上的一點(diǎn),且,點(diǎn)在對(duì)稱軸右側(cè)的拋物線上運(yùn)動(dòng),連接,與拋物線的對(duì)稱軸交于點(diǎn),連接,當(dāng)平分時(shí),求點(diǎn)的坐標(biāo).
(3)直線交對(duì)稱軸于點(diǎn),是坐標(biāo)平面內(nèi)一點(diǎn),請(qǐng)直接寫出與全等時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com