1.小宇在學(xué)習(xí)解直角三角形的知識(shí)后,萌生了測(cè)量他家對(duì)面位于同一水平面的樓房高度的想法,他站在自家C處測(cè)得對(duì)面樓房底端B的俯角為45°,測(cè)得對(duì)面樓房頂端A的仰角為30°,并量得兩棟樓房間的距離為9米,請(qǐng)你用小宇測(cè)得的數(shù)據(jù)求出對(duì)面樓房AB的高度.(結(jié)果保留到整數(shù),參考數(shù)據(jù):$\sqrt{2}$≈1.4,$\sqrt{3}$≈1.7)

分析 根據(jù)正切的定義分別求出AD、BD的長(zhǎng),計(jì)算即可.

解答 解:在Rt△ADC中,tan∠ACD=$\frac{AD}{DC}$,
∴AD=DC•tan∠ACD=9×$\frac{\sqrt{3}}{3}$=3$\sqrt{3}$米,
在Rt△ADB中,tan∠BCD=$\frac{BD}{CD}$,
∴BD=CD=9米,
∴AB=AD+BD=3$\sqrt{3}$+9≈14米.
答:樓房AB的高度約為14米.

點(diǎn)評(píng) 本題考查的是解直角三角形的應(yīng)用-仰角俯角問(wèn)題,解決此類問(wèn)題要了解角之間的關(guān)系,找到與已知和未知相關(guān)聯(lián)的直角三角形,當(dāng)圖形中沒(méi)有直角三角形時(shí),要通過(guò)作高或垂線構(gòu)造直角三角形,另當(dāng)問(wèn)題以一個(gè)實(shí)際問(wèn)題的形式給出時(shí),要善于讀懂題意,把實(shí)際問(wèn)題劃歸為直角三角形中邊角關(guān)系問(wèn)題加以解決.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.不等式組$\left\{\begin{array}{l}{2x-1>0}\\{x+1≥0}\end{array}\right.$的解集是( 。
A.x$>\frac{1}{2}$B.-1$≤x<\frac{1}{2}$C.x$<\frac{1}{2}$D.x≥-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如圖,AB∥CD,CE交AB于點(diǎn)F,若∠E=20°,∠C=45°,則∠A的度數(shù)為( 。
A.15°B.25°C.35°D.45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,小東將一張長(zhǎng)AD為12、寬AB為4的矩形紙片按如下方式進(jìn)行折疊:在紙片的一邊BC上分別取點(diǎn)P,Q,使得BP=CQ,連結(jié)AP、DQ,將△ABP、△DCQ分別沿AP、DQ折疊得△APM,△DQN,連結(jié)MN.小東發(fā)現(xiàn)線段MN的位置和長(zhǎng)度隨著點(diǎn)P、Q的位置變化而發(fā)生改變.
(1)請(qǐng)?jiān)趫D1中過(guò)點(diǎn)M,N分別畫ME⊥BC于點(diǎn)E,NF⊥BC于點(diǎn)F.
求證:①M(fèi)E=NF;②MN∥BC.
(2)如圖1,若BP=3,求線段MN的長(zhǎng);
(3)如圖2,當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),求MN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列圖形中,是軸對(duì)稱圖形但不是中心對(duì)稱圖形的是( 。
A.平行四邊形B.菱形C.正三角形D.正六邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,△ABC為銳角三角形,AD是BC邊上的高,正方形EFGH的一邊FG在BC上,頂點(diǎn)E、H分別在AB、AC上,已知BC=40cm,AD=30cm.
(1)求證:△AEH∽△ABC;
(2)求這個(gè)正方形的邊長(zhǎng)與面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

13.△ABC的內(nèi)切圓的三個(gè)切點(diǎn)分別為D、E、F,∠A=75°,∠B=45°,則圓心角∠EOF=120度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點(diǎn)C與點(diǎn)E重合),點(diǎn)B、C(E)、F在同一條直線上.∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.如圖(2),△DEF從圖(1)的位置出發(fā),以1cm/s的速度沿CB向△ABC勻速移動(dòng),在△DEF移動(dòng)的同時(shí),點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),以2cm/s的速度沿BA向點(diǎn)A勻速移動(dòng),當(dāng)△DEF的頂點(diǎn)D移動(dòng)到AC邊上時(shí),△DEF停止移動(dòng),點(diǎn)P也隨之停止移動(dòng).DE與AC相交于點(diǎn)Q,連接PQ,設(shè)移動(dòng)時(shí)間為t(s)(0<t<4.5).
解答下列問(wèn)題:
(1)當(dāng)t為何值時(shí),點(diǎn)A在線段PQ的垂直平分線上?
(2)連接PE,設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;是否存在某一時(shí)刻t,使面積y最。咳舸嬖,求出y的最小值;若不存在,說(shuō)明理由;
(3)是否存在某一時(shí)刻t,使P、Q、F三點(diǎn)在同一條直線上?若存在,求出此時(shí)t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

11.如圖所示,一只螞蟻從A點(diǎn)出發(fā)到D,E,F(xiàn)處尋覓食物.假定螞蟻在每個(gè)岔路口都等可能的隨機(jī)選擇一條向左下或右下的路徑(比如A岔路口可以向左下到達(dá)B處,也可以向右下到達(dá)C處,其中A,B,C都是岔路口).那么,螞蟻從A出發(fā)到達(dá)E處的概率是$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案