【題目】龍華區(qū)某學校開展四點半課堂,計劃開設以下課外活動項目:版畫、機器人、航模、園藝種植為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調(diào)查每位學生必須選且只能選其中一個項目,并將調(diào)查結果繪制成了如圖1、2的兩幅不完整的統(tǒng)計圖,請根據(jù)圖中的信息回答下列問題:

這次被調(diào)查的學生共有______人;圖1中,選版畫所在扇形的圓心角度數(shù)為______;

請將圖2的條形統(tǒng)計圖補充完整;

若該校學生總人數(shù)為1500人,由于機器人項目因故取消,原選機器人的學生轉選了航模項目,則該校學生中選航模項目的總人數(shù)為______

【答案】200、36;補圖見解析; 810.

【解析】

由D類有40人,所占扇形的圓心角為,即可求得這次被調(diào)查的學生數(shù),再用乘以A人數(shù)占總人數(shù)的比例可得;

首先求得C項目對應人數(shù),即可補全統(tǒng)計圖;

總人數(shù)乘以樣本中B人數(shù)所占比例的,加上總人數(shù)乘以樣本中C所占比例可得.

這次調(diào)查的學生總人數(shù)為人,選“版畫“所在扇形的圓心角度數(shù)為,

故答案為:200、36;

項目的人數(shù)為人,

補全統(tǒng)計圖如下:

該校學生中選“航!绊椖康目側藬(shù)為人,

故答案為:810.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在等邊三角形ABC中,點P在△ABC內(nèi),點Q在△ABC外,且∠ABPACQ,BPCQ.

(1)求證:△ABP≌△ACQ;

(2)請判斷△APQ是什么三角形,試說明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線分別交x軸、y軸于A、B兩點,拋物線經(jīng)過點A,和x軸的另一個交點為C.

求拋物線的解析式;

如圖1,點D是拋物線上的動點,且在第三象限,求面積的最大值;

如圖2,經(jīng)過點的直線交拋物線于點P、Q,連接CP、CQ分別交y軸于點E、F,求的值.

備注:拋物線頂點坐標公式

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時出發(fā),到達目的地后停止,設慢車行駛時間為小時,兩車之間的距離為千米,兩者的關系如圖所示,根據(jù)圖象探究:

1)看圖填空:兩車出發(fā) 小時,兩車相遇;

2)求快車和慢車的速度;

3)求線段所表示的的關系式,并求兩車行駛小時兩車相距多少千米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在△AFD和△CEB中,點A、E、F、C在同一條直線上.有下面四個論斷:

(1)AD=CB,(2)AE=CF,(3)∠B=∠D,(4)AD∥BC.

請用其中三個作為條件,余下一個作為結論,進行證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,如圖,ABC,C=90,AC=BC,AD是∠BAC的平分線,DEAB,垂足為E,AB=15cm,DBE的周長為______cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在ABC中,∠ACB=90°,點P是線段AC上一點,過點AAB的垂線,交BP的延長線于點M,MNAC于點N,PQAB于點QAQ=MN 求證:

1APM是等腰三角形;

2PC=AN

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩名同學進行登山比賽,甲同學和乙同學沿相同的路線同時在早800從山腳出發(fā)前往山頂,甲同學到達山頂后休息1小時,沿原路以每小時6千米的速度下山,在這一過程中,各自行進的路程隨所用時間變化的圖象如圖所示,根據(jù)提供信息得出以下四個結論:

甲同學從山腳到達山頂?shù)穆烦虨?/span>12千米;

乙同學登山共用4小時;

甲同學在1400返回山腳;

甲同學返回與乙同學相遇時,乙同學距登到山頂還有千米的路程.

以上四個結論正確的有  

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AMCN,點B為平面內(nèi)一點,ABBCB

1)如圖1,直接寫出∠A和∠C之間的數(shù)量關系   ;

2)如圖2,過點BBDAM于點D,∠BAD與∠C有何數(shù)量關系,并說明理由;

3)如圖3,在(2)問的條件下,點E,FDM上,連接BE,BF,CFBF平分∠DBC,BE平分∠ABD,若∠FCB+NCF=180°,∠BFC=5DBE,求∠EBC的度數(shù).

查看答案和解析>>

同步練習冊答案