【題目】在平面直角坐標系中,已知點A、B的坐標分別為(-,0)、(0,-1),把點A繞坐標原點O順時針旋轉(zhuǎn)135°得點C,若點C在反比例函數(shù)y=的圖象上.
(1)求反比例函數(shù)的表達式;
(2)若點D在y軸上,點E在反比例函數(shù)y=的圖象上,且以點A、B、D、E為頂點的四邊形是平行四邊形.請畫出滿足題意的示意圖并在示意圖的下方直接寫出相應(yīng)的點D、E的坐標.
【答案】(1)y=;(2)示意圖見解析,E(-,-),D(0,-1-)或E(-,-),D(0,-1+)或E , D
【解析】
(1)根據(jù)旋轉(zhuǎn)和直角三角形的邊角關(guān)系可以求出點C的坐標,進而確定反比例函數(shù)的關(guān)系式;
(2)分兩種情況進行討論解答,①點E在第三象限,由題意可得E的橫坐標與點A的相同,將A的橫坐標代入反比例函數(shù)的關(guān)系式,可求出縱坐標,得到E的坐標,進而得到AE的長,也是BD的長,因此D在B的上方和下方,即可求出點D的坐標,②點E在第一象限,由三角形全等,得到E的橫坐標,代入求出縱坐標,確定E的坐標,進而求出點D的坐標.
(1)由旋轉(zhuǎn)得:OC=OA=,∠AOC=135°,
過點C作CM⊥y軸,垂足為M,則∠COM=135°-90°=45°,
在Rt△OMC中,∠COM=45°,OC=,
∴OM=CM=1,
∴點C(1,1),代入y=得:k=1,
∴反比例函數(shù)的關(guān)系式為:y=,
答:反比例函數(shù)的關(guān)系式為:y=
(2)①當點E在第三象限反比例函數(shù)的圖象上,如圖1,圖2,
∵點D在y軸上,AEDB是平行四邊形,
∴AE∥DB,AE=BD,AE⊥OA,
當x=-時,y==-,
∴E(-,-)
∵B(0,-1),BD=AE=,
當點D在B的下方時,
∴D(0,-1-)
當點D在B的上方時,
∴D(0,-1+),
②當點E在第一象限反比例函數(shù)的圖象上時,如圖3,
過點E作EN⊥y軸,垂足為N,
∵ABED是平行四邊形,
∴AB=DE,AB=DE,
∴∠ABO=∠EDO,
∴△AOB≌△END (AAS),
∴EN=OA=,DN=OB=1,
當x=時,代入y=得:y=,
∴E(,),
∴ON=,OD=ON+DN=1+,
∴D(0,1+)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,的頂點均在格點上,點 坐標為.
(1)畫出關(guān)于軸對稱的;
(2)畫出將繞原點逆時針旋轉(zhuǎn)90°所得的;
(3)與能組成軸對稱圖形嗎?若能,請你畫出所有的對稱軸.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市推出電腦上網(wǎng)包月制,每月收取費用y(元)與上網(wǎng)時間x(小時)的函數(shù)關(guān)系如圖所示,其中BA是線段,且BA∥x軸,AC是射線.
(1)當x≥30,求y與x之間的函數(shù)關(guān)系式;
(2)若小李4月份上網(wǎng)20小時,他應(yīng)付多少元的上網(wǎng)費用?
(3)若小李5月份上網(wǎng)費用為75元,則他在該月份的上網(wǎng)時間是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】第二十四屆冬季奧林匹克運動會將于2022年在北京市和張家口市舉行.為了調(diào)查學生對冬奧知識的了解情況,從甲、乙兩校各隨機抽取20名學生進行了相關(guān)知識測試,獲得了他們的成績(百分制),并對數(shù)據(jù)(成績)進行了整理、描述和分析.下面給出了部分信息.
a.甲校20名學生成績的頻數(shù)分布表和頻數(shù)分布直方圖如下:
b.甲校成績在的這一組的具體成績是:
87 88 88 88 89 89 89 89
c.甲、乙兩校成績的平均分、中位數(shù)、眾數(shù)、方差如下:
根據(jù)以上圖表提供的信息,解答下列問題:
(1)表1中a = ;表2中的中位數(shù)n = ;
(2)補全圖1甲校學生樣本成績頻數(shù)分布直方圖;
(3)在此次測試中,某學生的成績是87分,在他所屬學校排在前10名,由表中數(shù)據(jù)可知該學生是 校的學生(填“甲”或“乙”),理由是 ;
(4)假設(shè)甲校200名學生都參加此次測試,若成績80分及以上為優(yōu)秀,估計成績優(yōu)秀的學生人數(shù)為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1的小正方形網(wǎng)格中,△AOB的頂點均在格點上,
(1)B點關(guān)于y軸的對稱點坐標為 ;
(2)將△AOB向左平移3個單位長度得到△A1O1B1,請畫出△A1O1B1;
(3)以原點O為對稱中心,畫出△ AOB與關(guān)于原點對稱的△ A2 O B2;
(4)以原點O為旋轉(zhuǎn)中心,畫出把△AOB順時針旋轉(zhuǎn)90°的圖形△A3 O B3.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車從A地出發(fā),勻速駛向B地.甲車以80km/h的速度行駛1h后,乙車才沿相同路線行駛.乙車先到達B地并停留1h后,再以原速按原路返回,直至與甲車相遇.在此過程中,兩車之間的距離y(km)與乙車行駛時間x(h)之間的函數(shù)關(guān)系如圖所示.下列說法:①乙車的速度是120km/h;②m=160;③點H的坐標是(7,80);④n=7.5.其中說法正確的有( 。
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩臺機床同時加工直徑為的同種規(guī)格零件,為了檢查兩臺機床加工零件的穩(wěn)定性,質(zhì)檢員從兩臺機床的產(chǎn)品中各抽取件進行檢測,結(jié)果如下(單位:):
甲 | |||||
乙 |
(1)分別求出這兩臺機床所加工零件直徑的平均數(shù)和方差;
(2)根據(jù)所學的統(tǒng)計知識,你認為哪一臺機床生產(chǎn)零件的穩(wěn)定性更好一些,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=8厘米,AC=16厘米,點P從A出發(fā),以每秒2厘米的速度向B運動,點Q從C同時出發(fā),以每秒3厘米的速度向A運動,其中一個動點到端點時,另一個動點也相應(yīng)停止運動,設(shè)運動的時間為t.
⑴用含t的代數(shù)式表示:AP= ,AQ= .
⑵當以A,P,Q為頂點的三角形與△ABC相似時,求運動時間是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com