【題目】一家商店進行裝修,若請甲、乙兩個裝修組同時施工,8天可以完成,需付兩組費用共3520元,若先請甲組單獨做6天,再請乙組單獨做12天可以完成,需付費用3480元,問:
(1)甲、乙兩組工作一天,商店各應(yīng)付多少錢?
(2)已知甲單獨完成需12天,乙單獨完成需24天,單獨請哪個組,商店所需費用最少?
(3)若裝修完后,商店每天可贏利200元,你認為如何安排施工更有利于商店?請你幫助商店決策.(可用(1)(2)問的條件及結(jié)論)

【答案】
(1)解:設(shè):甲組工作一天商店應(yīng)付x元,乙組工作一天商店付y元.

由題意得

解得

答:甲、乙兩組工作一天,商店各應(yīng)付300元和140元.


(2)解:單獨請甲組需要的費用:300×12=3600元.

單獨請乙組需要的費用:24×140=3360元.

答:單獨請乙組需要的費用少.


(3)解:請兩組同時裝修,理由:

甲單獨做,需費用3600元,少贏利200×12=2400元,相當(dāng)于損失6000元;

乙單獨做,需費用3360元,少贏利200×24=4800元,相當(dāng)于損失8160元;

甲乙合作,需費用3520元,少贏利200×8=1600元,相當(dāng)于損失5120元;

因為5120<6000<8160,

所以甲乙合作損失費用最少.

答:甲乙合作施工更有利于商店.


【解析】(1)本題的等量關(guān)系是:甲做8天需要的費用+乙作8天需要的費用=3520元.甲組6天需付的費用+乙做12天需付的費用=3480元,由此可得出方程組求出解.(2)根據(jù)(1)得出的甲乙每工作一天,商店需付的費用,然后分別計算出甲單獨做12天需要的費用,乙單獨做24天需要的費用,讓兩者進行比較即可.(3)本題可將每種施工方法的施工費加上施工期間商店損失的費用,然后將不同方案計算出的結(jié)果進行比較,損失最少的方案就是最有利商店的方案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了鼓勵市民節(jié)約用水,某市水費實行分段計費制,每戶每月用水量在規(guī)定用量及以下的部分收費標準相同,超出規(guī)定用量的部分收費標準相同.例如:若規(guī)定用量為10噸,每月用水量不超過10噸按1.5/噸收費,超出10噸的部分按2/噸收費,則某戶居民一個月用水8噸,則應(yīng)繳水費:8×1.5=12(元);某戶居民一個月用水13噸,則應(yīng)繳水費:10×1.5+(13﹣10)×2=21(元).

表是小明家14月份用水量和繳納水費情況,根據(jù)表格提供的數(shù)據(jù),回答:

月份

用水量(噸)

6

7

12

15

水費(元)

12

14

28

37

(1)該市規(guī)定用水量為   噸,規(guī)定用量內(nèi)的收費標準是   /噸,超過部分的收費標準是   /噸.

(2)若小明家五月份用水20噸,則應(yīng)繳水費   元.

(3)若小明家六月份應(yīng)繳水費46元,則六月份他們家的用水量是多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,已知平行四邊形ABCD的點A(0,﹣2)、點B(3m,4m+1)(m﹣1),點C(6,2),則對角線BD的最小值是( 。

A. 3 B. 2 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列各圖形中點的個數(shù),根據(jù)其中蘊含的規(guī)律回答下列問題:

(1)圖中有   個點;圖中有   個點;圖中有   個點;

(2)請用代數(shù)式表示出第n個圖形中點個數(shù);并求第10個圖形中共有多少個點?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:()2+(﹣4)0cos45°.

【答案】1

【解析】試題分析:把原式的第一項根據(jù)負整數(shù)指數(shù)冪的意義化簡,第二項根據(jù)算術(shù)平方根的定義求出9的算術(shù)平方根,第三項根據(jù)零指數(shù)公式化簡,最后一項利用特殊角的三角函數(shù)值化簡,合并后即可求出值.

試題解析:原式=4﹣3+1﹣

=2﹣1

=1.

型】解答
結(jié)束】
16

【題目】《九章算術(shù)》勾股章有一題:今有二人同所立,甲行率七,乙行率三.乙東行,甲南行十步而斜東北與乙會.問甲乙行各幾何.大意是說,已知甲、乙二人同時從同一地

點出發(fā),甲的速度為7,乙的速度為3.乙一直向東走,甲先向南走10步,后又斜向北偏東方向走了一段后與乙相遇.那么相遇時,甲、乙各走了多遠?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:點M,N把線段AB分割成AM、MN,NB,若以AM、MN、NB為邊的三角形是一個直角三角形,則稱點M、N是線段AB的勾股分割點.
(1)如圖①,已知M、N是線段AB的勾股分割點,AM=6,MN=8,求NB的長;

(2)如圖②,在△ABC中,點D、E在邊線段BC上,且BD=3,DE=5,EC=4,直線l∥BC,分別交AB、AD、AE、AC于點F、M、N、G.求證:點M,N是線段FG的勾股分割點

(3)在菱形ABCD中,∠ABC=β(β<90°),點E、F分別在BC、CD上,AE、AF分別交BD于點M、N.
①如圖③,若BE= BC,DF= CD,求證:M、N是線段BD的勾股分割點.
②如圖④,若∠EAF= ∠BAD,sinβ= ,當(dāng)點M、N是線段AB的勾股分割點時,求BM:MN:ND的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(題文)如圖,在等腰直角三角形MNC中,CNMN,將MNC繞點C順時針旋轉(zhuǎn)60°,得到ABC,連接AM,BM,BMAC于點O.

(1)NCO的度數(shù)為________;

(2)求證:CAM為等邊三角形;

(3)連接AN,求線段AN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c的對稱軸是直線x=2,且經(jīng)過點(1,4)和點(5,0),求這個函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AOB是一鋼架,AOB=15°,為使鋼架更加牢固,需在其內(nèi)部添加一些鋼管EF、FG、GH…添的鋼管長度都與OE相等,則最多能添加這樣的鋼管( )根.

A. 2 B. 4 C. 5 D. 無數(shù)

查看答案和解析>>

同步練習(xí)冊答案