【題目】如圖,在平面直角坐標(biāo)系中,直線與坐標(biāo)軸分別交于,兩點,以線段為邊,在第一象限內(nèi)作正方形,將正方形沿軸負方向,平移個單位長度,使點恰好落在直線上,則的值為________.
【答案】1
【解析】
如圖,作CN⊥OB于N,DM⊥OA于M,利用三角形全等,求出點D坐標(biāo)即可解決問題.
解:如圖作CN⊥OB于N,DM⊥OA于M,CN與DM交于點F,
∵直線y=-3x+3與x軸、y軸分別交于B、A兩點,
∴點A(0,3),點B(1,0),
∵四邊形ABCD是正方形,
∴AB=AD=DC=BC,∠ABC=90°,
∵∠BAO+∠ABO=90°,∠ABO+∠CBN=90°,
∴∠BAO=∠CBN,
在△BAO和△CBN中,
,
∴△BAO≌△CBN(AAS),
∴BN=AO=3,CN=BO=1,
同理可以得到:DF=AM=BO=1,CF=DM=AO=3,
∴點F(4,4),D(3,4),
∵將正方形ABCD沿x軸負方向平移a個單位長度,使點D恰好落在直線y=3x-2上,
∴把y=4代入y=3x-2得,x=2,
∴a=3-2=1,
∴正方形沿x軸負方向平移a個單位長度后,點D恰好落在直線y=3x-2上時,a=1,
故答案為1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,點P在對角線AC上,且PA=PD,⊙O是△PAD的外接圓.
(1)求證:AB是⊙O的切線;
(2)若AC=8,tan∠BAC= ,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,正確的個數(shù)是 ( )
①若三條線段的比為1:1:,則它們組成一個等腰直角三角形;②兩條對角線相等的平行四邊形是矩形;③對角線互相垂直的四邊形是菱形;④有兩個角相等的梯形是等腰梯形;⑤一條直線與矩形的一組對邊相交,必分矩形為兩個直角梯形。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長分別為和的兩個正方形和并排放在一起,連結(jié)并延長交于點,交于點,則
A. B. 2 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E在以AB為直徑的⊙O上,點C是 的中點,過點C作CD垂直于AE,交AE的延長線于點D,連接BE交AC于點F.
(1)求證:CD是⊙O的切線;
(2)若cos∠CAD= ,BF=15,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與直線交于,兩點,點是拋物線上,之間的一個動點,過點分別作軸、軸的平行線與直線交于點,.
(1)求拋物線的解析式;
(2)若為的中點,求的長;
(3)如圖,以,為邊構(gòu)造矩形,設(shè)點的坐標(biāo)為,
①請求出,之間的關(guān)系式;②求出矩形的周長最大時,點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地下車庫出口處安裝了“兩段式欄桿”,如圖1所示,點A是欄桿轉(zhuǎn)動的支點,點E是欄桿兩段的聯(lián)結(jié)點.當(dāng)車輛經(jīng)過時,欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示(欄桿寬度忽略不計),其中AB⊥BC, EF∥BC,∠AEF=143°,AB=AE=1.3米,那么適合該地下車庫的車輛限高標(biāo)志牌為多少米?(結(jié)果精確到0.1.參考數(shù)據(jù):sin 37° ≈ 0.60,cos 37° ≈ 0.80,tan 37° ≈ 0.75)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com