【題目】如圖,已知O是直線AB上一點(diǎn),∠AOC45°36’OD平分∠BOC,求∠AOD的度數(shù).完成下列推理過程:

解:由題意可知,∠AOB是平角,

AOB   +BOC

因?yàn)椤?/span>AOC45°36′

所以∠BOC   °   

又因?yàn)?/span>OD平分∠BOC

∴∠CODBOC   °   

∴∠AOD=∠   +      °   

【答案】AOC,134,2467,12,AOC,COD112,48

【解析】

由平角定義得出∠AOB=∠AOC+BOC,求出∠BOC134°24′,由角平分線定義的∠CODBOC67°12′,即可得出答案.

由題意可知,∠AOB是平角,

則∠AOB=∠AOC+BOC,

因?yàn)椤?/span>AOC45°36′,

所以∠BOC134°24′,

又因?yàn)?/span>OD平分∠BOC,

∴∠CODBOC67°12′,

∴∠AOD=∠AOC+COD112°48′;

故答案為:∠AOC,134,24,67,12AOC,COD,11248

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直線AB、CD相交于點(diǎn)O,

(1)若∠AOC+∠BOD=90°,求∠BOC的度數(shù)

(2)若∠BOC比∠AOC的2倍多33°,求∠AOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O的直徑AB=10,AC=6,ACB的平分線交⊙O于點(diǎn)D,過點(diǎn)DDEABCA延長(zhǎng)線于點(diǎn)E,連接AD,BD.

(1)ABD的面積是________:

(2)求證:DE是⊙O的切線:

(3)求線段DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,AB⊙O的直徑,弦BC=2cm,∠ABC=60

1)求⊙O的直徑;

2)若DAB延長(zhǎng)線上一點(diǎn),連結(jié)CD,當(dāng)BD長(zhǎng)為多少時(shí),CD⊙O相切;

3)若動(dòng)點(diǎn)E2cm/s的速度從點(diǎn)A出發(fā)沿著AB方向運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)F1cm/s的速度從點(diǎn)B出發(fā)沿BC方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<2),連結(jié)EF,當(dāng)t為何值時(shí),△BEF為直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某制筆企業(yè)欲將200件產(chǎn)品運(yùn)往,三地銷售,要求運(yùn)往地的件數(shù)是運(yùn)往地件數(shù)的2倍,各地的運(yùn)費(fèi)如圖所示.設(shè)安排件產(chǎn)品運(yùn)往地.

產(chǎn)品件數(shù)(件)

運(yùn)費(fèi)(元)

1)①根據(jù)信息補(bǔ)全上表空格.②若設(shè)總運(yùn)費(fèi)為元,寫出關(guān)于的函數(shù)關(guān)系式及自變量的取值范圍.

2)若運(yùn)往地的產(chǎn)品數(shù)量不超過運(yùn)往地的數(shù)量,應(yīng)怎樣安排,三地的運(yùn)送數(shù)量才能達(dá)到運(yùn)費(fèi)最少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中有對(duì)角線ACBD相等,已知AB=4,BC=3,則有AB2+BC2=AC2,矩形在直線MN上繞其右下角的頂點(diǎn)B向右旋轉(zhuǎn)90°至圖①位置,再繞右下角的頂點(diǎn)繼續(xù)向右旋轉(zhuǎn)至圖②位置……依次類推,則:

(1)AC=__________.

(2)這樣連續(xù)旋轉(zhuǎn)2019次后,頂點(diǎn)B在整個(gè)旋轉(zhuǎn)過程中所經(jīng)過的路程之和是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上點(diǎn)A表示的數(shù)為6,B是數(shù)軸上在左側(cè)的一點(diǎn),且A,B兩點(diǎn)間的距離為10。動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒6個(gè)單位長(zhǎng)度的度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒。

1)數(shù)軸上點(diǎn)B表示的數(shù)是______;當(dāng)點(diǎn)P運(yùn)動(dòng)到AB的中點(diǎn)時(shí),它所表示的數(shù)是_____。

2)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若點(diǎn)PQ同時(shí)出發(fā),求:

①當(dāng)點(diǎn)P運(yùn)動(dòng)多少秒時(shí),點(diǎn)P追上點(diǎn)Q?

②當(dāng)點(diǎn)P運(yùn)動(dòng)多少秒時(shí),點(diǎn)P與點(diǎn)Q間的距離為8個(gè)單位長(zhǎng)度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,以AB為直徑的O交BC于點(diǎn)D,過點(diǎn)D作O的切線DE,交AC于點(diǎn)E,AC的反向延長(zhǎng)線交O于點(diǎn)F.

(1)求證:DEAC;

(2)若DE+EA=8,O的半徑為10,求AF的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)問題發(fā)現(xiàn)

如圖1,在等邊三角形ABC中,點(diǎn)MBC邊上異于B、C的一點(diǎn),以AM為邊作等邊三角形AMN,連接CN,NCAB的位置關(guān)系為__________;

(2)深入探究

如圖2,在等腰三角形ABC中,BA=BC,點(diǎn)MBC邊上異于B、C的一點(diǎn),以AM為邊作等腰三角形AMN,使∠ABC=AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由;

(3)拓展延伸

如圖3,在正方形ADBC中,AD=AC,點(diǎn)MBC邊上異于B、C的一點(diǎn),以AM為邊作正方形AMEF,點(diǎn)N為正方形AMEF的中點(diǎn),連接CN,若BC=10,CN=,試求EF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案