對如圖1所示的圖形的三個說法①是半圓;②是弓形;③是扇形,其中正確的個數(shù)是

[  ]

A.3

B.2

C.1

D.0

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

把三角形形狀的紙片放在方框紙上,使其每一個頂點都在格點上,如圖1所示(方格邊長均為1).對這個三角形進(jìn)剪切、拼接后,可以得到一個平行四邊形,如圖2中陰影部分所示.
剪切、拼接的方案如下:如圖2,取BC的中點M,連AM.剪下△AMC后,沿直線BC翻折,所得圖形稱為△DMC;再把△DMC沿射線CA方向平移線段CA的長度后,可得到平行四邊形AEBM.
我們約定:剪切、拼接 時,紙片的每一部分都要被用到,而且不得用所給紙片以外的紙片.

(1)請你采用不同于圖2的剪切、拼接方案,也得到一個平行四邊形,并說明你的剪切、拼接方案,同時在圖3中用陰影表示出你得到的平行四邊形;
(2)對這個三角形進(jìn)行剪切、拼接后,也可以得到一梯形.試在圖4中,用陰影表示出你得到的梯形(不必說明剪切、拼接方案,但必須保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:044

意大利文藝復(fù)興時代的著名畫家達(dá)·芬奇對勾股定理也曾進(jìn)行了研究.他驗證勾股定理的方法可以從下面的實驗中得到體現(xiàn).

(1)在一張長方形的紙板上畫兩個邊長分別為a,b的正方形,并連接BC,F(xiàn)E(如圖①所示).

(2)沿ABCDEFA剪下,得到兩個大小相同的紙板Ⅰ,Ⅱ,如圖②所示.

(3)將紙板Ⅱ翻轉(zhuǎn)后與Ⅰ拼成如圖③所示的圖形.

(4)比較圖①,圖③中兩個多邊形ABCDEF和的面積,你能驗證勾股定理嗎?請動手做一做.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

把三角形形狀的紙片放在方框紙上,使其每一個頂點都在格點上,如圖1所示(方格邊長均為1).對這個三角形進(jìn)剪切、拼接后,可以得到一個平行四邊形,如圖2中陰影部分所示.
剪切、拼接的方案如下:如圖2,取BC的中點M,連AM.剪下△AMC后,沿直線BC翻折,所得圖形稱為△DMC;再把△DMC沿射線CA方向平移線段CA的長度后,可得到平行四邊形AEBM.
我們約定:剪切、拼接 時,紙片的每一部分都要被用到,而且不得用所給紙片以外的紙片.

(1)請你采用不同于圖2的剪切、拼接方案,也得到一個平行四邊形,并說明你的剪切、拼接方案,同時在圖3中用陰影表示出你得到的平行四邊形;
(2)對這個三角形進(jìn)行剪切、拼接后,也可以得到一梯形.試在圖4中,用陰影表示出你得到的梯形(不必說明剪切、拼接方案,但必須保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年安徽省巢湖市廬江縣初中畢業(yè)班質(zhì)量檢測數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•廬江縣模擬)如圖1所示,點C將線段AB分成兩部分,如果,那么點C為線段AB的黃金分割點.某研究小組在進(jìn)行課題學(xué)習(xí)時,由黃金分割點聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1、S2,如果,那么稱直線l為該圖形的黃金分割線.
(1)研究小組猜想:在△ABC中,若點D為AB邊上的黃金分割點,如圖2所示,則直線CD是△ABC的黃金分割線,你認(rèn)為對嗎?說說你的理由;
(2)請你說明:三角形的中線是否是該三角形的黃金分割線.

查看答案和解析>>

同步練習(xí)冊答案