如圖,平面直角坐標系中,矩形ABCO的邊OA在y正半軸上,OC在x正半軸上,點D是線段OC上一點,過點D作DE⊥AD交直線BC于點E,以A、D、E為頂點作矩形ADEF.
(1)求證:△AOD∽△DCE;
(2)若點A坐標為(0,4),點C坐標為(7,0).
①當點D的坐標為(5,0)時,拋物線y=ax2+bx+c過A、F、B三點,求點F的坐標及a、b、c的值;
②若點D(k,0)是線段OC上任意一點,點F是否還在①中所求的拋物線上?如果在,請說明理由;如果不在,請舉反例說明;
(3)若點A的坐標是(0,m),點C的坐標是(n,0),當點D在線段OC上運動時,是否也存在一條拋物線,使得點F都落在該拋物線上?若存在,請直接用含m、n的代數(shù)式表示該拋物線;若不存在,請說明理由.

【答案】分析:(1)根據(jù)∠ECD=∠ADE=∠AOD=90°,以及∠OAD=∠EDC,即可得出△AOD∽△DCE;
(2)由△AOD∽△DCE,得出CE=,CD=2,進而求HF的長,利用A(0,4)、F(2,)、B(7,4),求出二次函數(shù)解析式;
(3)根據(jù)②式中,直接將A,C點的坐標代入即可.
解答:(1)證明:∵四邊形ABCD是矩形,
∴∠ECD=∠ADE=∠AOD=90°,
∴∠ADO+∠EDC=90°,
∠OAD+∠ADO=90°,
∴∠OAD=∠EDC,
∴△AOD∽△DCE;

(2)解:①過F作FH⊥OC交OC于H,交AB于N,
由題意得,AB=OC=7,AO=BC=4,OD=5
∵△AOD∽△DCE,
,
,
∴CE=,CD=2
∵四邊形ADEF是矩形,DE=AF,∠DAB+∠BAF=90°
又∵∠OAD+∠DAB=90°,
∴∠OAD=∠BAF,
∴∠EDC=∠BAF,
∴△AFN≌△DEC,
∴AN=DC=2,F(xiàn)N=EC=,
∴FH=
∴F點的坐標是(2,),
由A(0,4)、F(2,)、B(7,4),
,
解得,
∴過A、F、B三點的拋物線的表達式為:;

②點F在①中所求的拋物線上.
理由是:由(2)中①可知,
拋物線的表達式為:
當D(k,0)時,則DC=7-k,
同理,由△AOD∽△DCE和△AFN≌△DEC
求得:F(7-k,),
將x=7-k代入得,,

所以點F在①中所求的拋物線上.

(3)解:存在一條拋物線,使得點F都落在該拋物線上.
該拋物線的表達式為:
點評:此題主要考查了二次函數(shù)的綜合應用以及相似三角形的判定與性質(zhì),主要考查學生數(shù)形結合的數(shù)學思想方法,是一道難度較大的二次函數(shù)題,綜合考查了三角形相似的性質(zhì).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,平面直角坐標系中,O為直角三角形ABC的直角頂點,∠B=30°,銳角頂點A在雙曲線y=
1x
上運動,則B點在函數(shù)解析式
 
上運動.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,平面直角坐標系中,⊙P與x軸分別交于A、B兩點,點P的坐標為(3,-1),AB精英家教網(wǎng)=2
3

(1)求⊙P的半徑.
(2)將⊙P向下平移,求⊙P與x軸相切時平移的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,平面直角坐標系中,OB在x軸上,∠ABO=90°,點A的坐標為(1,2).將△AOB繞點A逆時針旋轉(zhuǎn)90°,則點O的對應點C的坐標為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖:平面直角坐標系中,△ABC的三個頂點的坐標為A(a,0),B(b,0),C(0,c),且a,b,c滿足
a+2
+|b-2|+(c-b)2=0
.點D為線段OA上一動點,連接CD.
(1)判斷△ABC的形狀并說明理由;
(2)如圖,過點D作CD的垂線,過點B作BC的垂線,兩垂線交于點G,作GH⊥AB于H,求證:
S△CAD
S△DGH
=
AD
GH
;
(3)如圖,若點D到CA、CO的距離相等,E為AO的中點,且EF∥CD交y軸于點F,交CA于M.求
FC+2AE
3AM
的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖在平面直角坐標系中,A點坐標為(8,0),B點坐標為(0,6)C是線段AB的中點.請問在y軸上是否存在一點P,使得以P、B、C為頂點的三角形與△AOB相似?若存在,求出P點坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案