【題目】如圖,在等邊△ABC中,AB=2,N為AB上一點,且AN=1,AD=,∠BAC的平分線交BC于點D,M是AD上的動點,連接BM、MN,則BM+MN的最小值是( 。
A. B. 2C. 1D. 3
【答案】A
【解析】
連接CN,與AD交于點M,連接BM,此時BM+MN取得最小值,由AD為∠BAC的角平分線,利用三線合一得到AD⊥BC,且平分BC,可得出BM=CM,由BM+MN=CM+MN=CN,可得出CN的長為最小值,利用等邊三角形的性質(zhì)及勾股定理求出即可.
解:連接CN,與AD交于點M,連接BM,此時BM+MN取得最小值,
由AD為∠BAC的角平分線,利用三線合一得到AD⊥BC,且平分BC,
∴AD為BC的垂直平分線,
∴CM=BM,
∴BM+MN=CM+MN=CN,即最小值為CN的長,
∵△ABC為等邊三角形,且AB=2,AN=1,
∴CN為AB邊上的中線,
∴CN⊥AB,
在Rt△ACN中,AC=AB=2,AN=1,
根據(jù)勾股定理得:CN==.
故選:A.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=∠COD,若∠AOD=110°,∠BOC=70°,則以下結(jié)論正確的有( )
①∠AOC=∠BOD=90°;②∠AOB=20°;③∠AOB=∠AOD-∠AOC;④∠AOB=∠BOD.
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,直線y=-x-與x軸交于點A,與y軸交于點B,點C在x軸正半軸上,且OC=3AO,過點A作BC的平行線l.
(1)求直線BC的解析式;
(2)作點A關(guān)于BC的對稱點D,一動點P從C點出發(fā)按某一路徑運動到直線l上的點M,再沿垂直BC的方向運動到直線BC上的點N,再沿某一路徑運動到D點,求點P運動的最短路徑的長以及此時點N的坐標;
(3)如圖2,將△AOB繞點B旋轉(zhuǎn),使得A′O′⊥BC,得到△A′O′B,將△A′O′B沿直線BC平移得到△A″O″B′,連接A″、B″、C,是否存在點A″,使得△A″B′C為等腰三角形?若存在,請直接寫出點A″的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,BF平分∠ABC,交CD于點E,交AC于點F.若AB=10,BC=6,則CE的長為( 。
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖1,OM是∠AOB的平分線,點C在OM上,OC=5,且點C到OA的距離為3.過點C作CD⊥OA,CE⊥OB,垂足分別為D、E,易得到結(jié)論:OD+OE等于多少;
(1)把圖1中的∠DCE繞點C旋轉(zhuǎn),當CD與OA不垂直時(如圖2),上述結(jié)論是否成立?并說明理由;
(2)把圖1中的∠DCE繞點C旋轉(zhuǎn),當CD與OA的反向延長線相交于點D時:
①請在圖3中畫出圖形;
②上述結(jié)論還成立嗎?若成立,請給出證明;若不成立,請直接寫出線段OD、OE之間的數(shù)量關(guān)系,不需證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中每個小方格都是邊長為1個單位長度的正方形,在建立平面直角坐標系后,⊿ABC的頂點在格點上。 且A(1,-4),B(5,-4),C(4,-1)
【1】畫出⊿ABC;
【1】求出⊿ABC 的面積;
【1】若把⊿ABC向上平移2個單位長度,再向左平移4個單位長度得到⊿BC,在圖中畫出⊿BC,并寫出B的坐標。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=a(x﹣h)2+k(a,h,k為常數(shù))在坐標平面上的圖象通過(0,5)、(15,8)兩點.若a<0,0<h<10,則h之值可能為下列何值?( )
A.5
B.6
C.7
D.8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】依據(jù)下列解方程的過程,請在前面的括號內(nèi)填寫變形步驟,在后面的括號內(nèi)填寫變形依據(jù)。
解:原方程可變形為( )
( ),得( )
去括號,得
( ),得( )
合并同類項,得(合并同類項法則)
( ),得( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系 中,矩形 的邊 在 軸上,頂點 在拋物線 上,且拋物線交 軸于另一點 .
(1)則 = , =;
(2)已知 為 邊上一個動點(不與 、 重合),連結(jié) 交 于點 ,過點 作 軸的平行線分別交拋物線、直線 于 、 .
①求線段 的最大值,此時 的面積為;
②若以點 為圓心, 為半徑作⊙O,試判斷直線 與⊙O的能否相切,若能請求出 點坐標,若不能請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com