【題目】某商店用1000元人民幣購(gòu)進(jìn)水果銷(xiāo)售,過(guò)了一段時(shí)間,又用2400元人民幣購(gòu)進(jìn)這種水果,所購(gòu)數(shù)量是第一次購(gòu)進(jìn)數(shù)量的2倍,但每千克的價(jià)格比第一次購(gòu)進(jìn)的貴了2元.
(1)該商店第一次購(gòu)進(jìn)水果多少千克;
(2)假設(shè)該商店兩次購(gòu)進(jìn)的水果按相同的標(biāo)價(jià)銷(xiāo)售,最后剩下的20千克按標(biāo)價(jià)的五折優(yōu)惠銷(xiāo)售.若兩次購(gòu)進(jìn)水果全部售完,利潤(rùn)不低于950元,則每千克水果的標(biāo)價(jià)至少是多少元?
注:每千克水果的銷(xiāo)售利潤(rùn)等于每千克水果的銷(xiāo)售價(jià)格與每千克水果的購(gòu)進(jìn)價(jià)格的差,兩批水果全部售完的利潤(rùn)等于兩次購(gòu)進(jìn)水果的銷(xiāo)售利潤(rùn)之和.
【答案】(1)該商店第一次購(gòu)進(jìn)水果100千克;(2)每千克水果的標(biāo)價(jià)至少是15元.
【解析】
(1)首先根據(jù)題意,設(shè)該商店第一次購(gòu)進(jìn)水果x千克,則第二次購(gòu)進(jìn)水果2x千克,然后根據(jù):(1000÷第一次購(gòu)進(jìn)水果的重量 +2)×第二次購(gòu)進(jìn)的水果的重量=2400,列出方程,求出該商店第一次購(gòu)進(jìn)水果多少千克即可.
(2)首先根據(jù)題意,設(shè)每千克水果的標(biāo)價(jià)是x元,然后根據(jù):(兩次購(gòu)進(jìn)的水果的重量﹣20)×x+20×0.5x≥兩次購(gòu)進(jìn)水果需要的錢(qián)數(shù)+950,列出不等式,求出每千克水果的標(biāo)價(jià)是多少即可.
解:(1)設(shè)該商店第一次購(gòu)進(jìn)水果x千克,則第二次購(gòu)進(jìn)水果2x千克,
( +2)×2x=2400
整理,可得:2000+4x=2400,解得x=100.
經(jīng)檢驗(yàn),x=100是原方程的解.
答:該商店第一次購(gòu)進(jìn)水果100千克.
(2)設(shè)每千克水果的標(biāo)價(jià)是x元,則(100+100×2﹣20)×x+20×0.5x≥1000+2400+950
整理,可得:290x≥4350,解得x≥15,∴每千克水果的標(biāo)價(jià)至少是15元.
答:每千克水果的標(biāo)價(jià)至少是15元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=30°,以AB為直徑的⊙O經(jīng)過(guò)點(diǎn)C.過(guò)點(diǎn)C作⊙O的切線交AB的延長(zhǎng)線于點(diǎn)P.點(diǎn)D為圓上一點(diǎn),且 ,弦AD的延長(zhǎng)線交切線PC于點(diǎn)E,連接BC.
(1)判斷OB和BP的數(shù)量關(guān)系,并說(shuō)明理由;
(2)若⊙O的半徑為2,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,AC=BC,∠ACB=90°,點(diǎn)D在AB上,E在BC上,且AD=BE,BD=AC.
(1)如圖1,求證:DC=DE;
(2)如圖2,過(guò)E作EF⊥AB于F,若BF=2,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ΔABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,則∠DEF的度數(shù)是( 。
A.75°B.70°C.65°D.60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某片果園有果樹(shù)80棵,現(xiàn)準(zhǔn)備多種一些果樹(shù)提高產(chǎn)量,但是如果多種樹(shù),那么樹(shù)之間的距離和每棵樹(shù)所受光照就會(huì)減少,單棵樹(shù)的產(chǎn)量隨之降低.若該果園每棵果樹(shù)產(chǎn)果y(千克),增種果樹(shù)(棵),它們之間的函數(shù)關(guān)系如圖所示.
(1)求y與之間的函數(shù)關(guān)系式;
(2)當(dāng)增種果樹(shù)多少棵時(shí),果園的總產(chǎn)量w(千克)最大?最大產(chǎn)量是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,連接BD,且BD=CD,過(guò)點(diǎn)A作AM⊥BD于點(diǎn)M,過(guò)點(diǎn)D作DN⊥AB于點(diǎn)N,且DN=,在DB的延長(zhǎng)線上取一點(diǎn)P,滿足∠ABD=∠MAP+∠PAB,則AP=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖I,在中,.點(diǎn)在外,連接,作,交于點(diǎn),,,連接.則間的等量關(guān)系是______;(不用證明)
(2)如圖Ⅱ,,,,延長(zhǎng)交于點(diǎn),寫(xiě)出間的等量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi),點(diǎn)為坐標(biāo)原點(diǎn),的頂點(diǎn)在軸正半軸,頂點(diǎn)、分別在軸負(fù)半軸和正半軸上,,,
(1)求的長(zhǎng).
(2)動(dòng)點(diǎn)從點(diǎn)出發(fā)以每秒個(gè)單位長(zhǎng)度的速度沿向終點(diǎn)運(yùn)動(dòng),點(diǎn)運(yùn)動(dòng)的時(shí)間為,以為斜邊在右邊上方作等腰直角三角形,連接、,設(shè)的面積為(),求與之間的函數(shù)關(guān)系式,并直接寫(xiě)出自變量的取值范圍.
(3)在(2)的條件下,過(guò)點(diǎn)作的垂線交軸于,連接,當(dāng)四邊形的面積為,時(shí),求的值及點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,和的平分線相交于點(diǎn),且于點(diǎn).若,,則的長(zhǎng)為( )
A.1B.2C.3D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com