【題目】如圖,已知拋物線y=﹣+bx+4與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,若已知B點(diǎn)的坐標(biāo)為B(8,0).
(1)求拋物線的解析式及其對稱軸方程.
(2)連接AC、BC,試判斷△AOC與△COB是否相似?并說明理由.
(3)在拋物線上BC之間是否存在一點(diǎn)D,使得△DBC的面積最大?若存在請求出點(diǎn)D的坐標(biāo)和△DBC的面積;若不存在,請說明理由.
【答案】(1) 拋物線的解析式為y═;對稱軸方程為x=3;(2)相似,理由見解析;(3)當(dāng)t=4時,△DBC的最大面積為16,此時D點(diǎn)坐標(biāo)為(4,6)
【解析】
(1)直接把點(diǎn)B(8,0)代入拋物線y=﹣+bx+4,求出b的值即可得出拋物線的解析式,進(jìn)而可得出其對稱軸方程;
(2)求出A點(diǎn)坐標(biāo),再由銳角三角函數(shù)的定義得出tan∠ACO=tan∠CBO,故∠ACO=∠CBO,由此可得出結(jié)論;
(3)求出BC解析式,將S△BCD轉(zhuǎn)化為DHOB,設(shè)D(t,﹣t2+t+4),H(t,﹣t+4),面積可轉(zhuǎn)化為S△BCD=﹣(t﹣4)2+16,△DBC的最大面積為16,此時D點(diǎn)坐標(biāo)為(4,6).
(1)∵B點(diǎn)的坐標(biāo)為B(8,0),∴﹣16+8b+4=0,解得:b=,∴拋物線的解析式為y═﹣+x+4,對稱軸方程為x=﹣=3;
(2)由(1)知,拋物線的對稱軸方程為x=3,B(8,0),∴A(﹣2,0),C(0,4),∴OA=2,OC=4,OB=8,∴tan∠ACO=tan∠CBO=,∴∠ACO=∠CBO.
∵∠AOC=∠COB=90°,∴△AOC∽△COB.
(3)設(shè)BC解析式為y=kx+b,把(8,0),(0,4)分別代入解析式得:,解得:,∴y=﹣x+4.
作DH⊥x軸
當(dāng)t=4時,△DBC的最大面積為16,此時D點(diǎn)坐標(biāo)為(4,6).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某建筑公司甲、乙兩個工程隊通過公開招標(biāo)獲得某改造工程項(xiàng)目.已知甲隊單獨(dú)完成這項(xiàng)工程的時間是乙隊單獨(dú)完成這項(xiàng)工程時間的倍,由于乙隊還有其他任務(wù),先由甲隊單獨(dú)做55天后,再由甲、乙兩隊合做20天,完成了該項(xiàng)改造工程任務(wù).
(Ⅰ)請根據(jù)題意求甲、乙兩隊單獨(dú)完成改造工程任務(wù)各需多少天;
(Ⅱ)這項(xiàng)改造工程共投資200萬元,如果按完成的工程量付款,那么甲、乙兩隊可獲工程款各多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在大課間活動中,同學(xué)們積極參加體育鍛煉,小龍在全校隨機(jī)抽取了一部分同學(xué)就“我最喜愛的體育項(xiàng)目”進(jìn)行了一次調(diào)查(每位同學(xué)必選且只選一項(xiàng)).下面是他通過收集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息,解答以下問題:
(1)小龍一共抽取了 名學(xué)生.
(2)補(bǔ)全條形統(tǒng)計圖;
(3)求“其他”部分對應(yīng)的扇形圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了改善小區(qū)環(huán)境,某小區(qū)決定要在一塊邊靠墻(墻長18m)的空地,修建一個矩形綠地ABCD,綠地一邊靠墻,另三邊用總長為40m的柵欄圍住(如圖),設(shè)AB邊為xm,綠地面積為ym2.
(1)求y與x之間的函數(shù)關(guān)系,并求出自變量x的取值范圍;
(2)綠地的面積能不能為200m2?如果能,求出x的值,如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了貫徹落實(shí)市委政府提出的“精準(zhǔn)扶貧”精神,某校特制定了一系列幫扶A、B兩貧困村的計劃,現(xiàn)決定從某地運(yùn)送152箱魚苗到A、B兩村養(yǎng)殖,若用大小貨車共15輛,則恰好能一次性運(yùn)完這批魚苗,已知這兩種大小貨車的載貨能力分別為12箱/輛和8箱/輛,其運(yùn)往A、B兩村的運(yùn)費(fèi)如表:
車型 | 目的地 | |
A村(元/輛) | B村(元/輛) | |
大貨車 | ||
800 | 900 | |
小貨車 | 400 | 600 |
(1)求這15輛車中大小貨車各多少輛?
(2)現(xiàn)安排其中10輛貨車前往A村,其余貨車前往B村,設(shè)前往A村的大貨車為x輛,前往A、B兩村總費(fèi)用為y元,試求出y與x的函數(shù)解析式.
(3)在(2)的條件下,若運(yùn)往A村的魚苗不少于100箱,請你寫出使總費(fèi)用最少的貨車調(diào)配方案,并求出最少費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明的爸爸開車帶著小明在公路上勻速行駛,小明每隔一段時間看到的里程碑上的數(shù)如下:
時刻 | 12:00 | 13:00 | 14:30 |
碑上的數(shù) | 是一個兩位數(shù),數(shù)字之和是6 | 是一個兩位數(shù),十位與個位數(shù)字與12:00時所看到的正好顛倒了 | 比12:00時看到的兩位數(shù)中間多了個0 |
則12:00時看到的兩位數(shù)是多少?設(shè)12:00時看到的兩位數(shù)的個位數(shù)為y,十位數(shù)為x,列出的二元一次方程組為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知函數(shù)y=x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,點(diǎn)C與點(diǎn)A關(guān)于y軸對稱.
(1)求直線BC的函數(shù)解析式;
(2)設(shè)點(diǎn)M是x軸上的一個動點(diǎn),過點(diǎn)M作y軸平行線,交直線AB于點(diǎn)P,交直線BC于點(diǎn)Q.
①若△PQB的面積為,求點(diǎn)M的坐標(biāo):
②在①的條件下,在直線PQ上找一點(diǎn)R,使得△MOR≌△MOQ,直接寫出點(diǎn)R的坐標(biāo);
(3)連接BM,如圖2.若∠BMP=∠BAC,直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小剛在實(shí)踐課上要做一個如圖1所示的折扇,折扇扇面的寬度AB是骨柄長OA的,折扇張開的角度為120°.小剛現(xiàn)要在如圖2所示的矩形布料上剪下扇面,且扇面不能拼接,已知矩形布料長為24cm,寬為21cm.小剛經(jīng)過畫圖、計算,在矩形布料上裁剪下了最大的扇面,若不計裁剪和粘貼時的損耗,此時扇面的寬度AB為( )
A. 21cm B.20 cm C. 19cm D. 18cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校后勤人員到一家文具店給九年級的同學(xué)購買考試用文具包,文具店規(guī)定一次購買400個以上,可享受8折優(yōu)惠.若給九年級學(xué)生每人購買一個,不能享受8折優(yōu)惠,需付款1936元;若多買88個,就可享受8折優(yōu)惠,同樣只需付款1936元.請問該學(xué)校九年級學(xué)生有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com