分析 因?yàn)椤螩OD=∠A+∠OCA,∠A=∠COA,所以求出∠COD即可解決問題.
解答 解:∵CD切⊙O于C,
∴OC⊥CD,
∴∠OCD=90°,
∵CO=CD,
∴∠COD=∠D=45°,
∵OA=CO,
∴∠OAC=∠OCA,
∵∠COD=∠OAC+∠OCA=45°,
∴∠A=22.5°.
故答案為22.5°.
點(diǎn)評(píng) 本題考查切線的性質(zhì),等腰直角三角形的性質(zhì),三角形的外角的性質(zhì),熟練掌握這些性質(zhì)是解決問題的關(guān)鍵,記住切線垂直于過切點(diǎn)的半徑,等腰直角三角形兩個(gè)底角等于45°,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | -6 | B. | 6 | C. | -$\frac{1}{6}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{14}$ | B. | $\sqrt{24}$ | C. | $\sqrt{\frac{1}{2}}$ | D. | $\sqrt{0.3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com