【題目】下列命題:①相等的角是對頂角;②在同一平面內(nèi),若ab,bc,則ac;③同旁內(nèi)角互補;④互為鄰補角的兩角的角平分線互相垂直.⑤平面內(nèi),過一點能且只能作一條直線與已知直線垂直.其中真命題有______(填序號)

【答案】②④⑤

【解析】

根據(jù)對頂角的性質(zhì)、平行線的判定、平行線的性質(zhì)、角平分線的性質(zhì)判斷即可.

相等的角不一定是對頂角,①是假命題;
在同一平面內(nèi),若a∥b,b∥c,則a∥c,②是真命題;
同旁內(nèi)角不一定互補,③是假命題;
互為鄰補角的兩角的角平分線互相垂直,④是真命題.
平面內(nèi),過一點能且只能作一條直線與已知直線垂直,⑤是真命題,
故答案為:②④⑤.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四幅圖象近似刻畫兩個變量之間的關(guān)系,請按圖象順序?qū)⑾旅嫠姆N情景與之對應(yīng)排序(  ).

一輛汽車在公路上勻速行駛(汽車行駛的路程與時間的關(guān)系)

向錐形瓶中勻速注水(水面的高度與注水時間的關(guān)系)

將常溫下的溫度計插入一杯熱水中(溫度計的讀數(shù)與時間的關(guān)系)

一杯越來越?jīng)龅乃ㄋ疁嘏c時間的關(guān)系)

A.①②④③ B.③④②①

C.①④②③ D.③②④①

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC,DBC邊上的一點EAD的中點,ABC的平行線交CE的延長線于FAF=BD,連接BF.

(1)求證:BD=CD;

(2)如果AB=AC,試判斷四邊形AFBD的形狀并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在方格紙內(nèi)將ABC經(jīng)過一次平移后得到△ABC,圖中標(biāo)出了點B的對應(yīng)點B

(1) 補全△ABC;

(2) 根據(jù)下列條件,利用網(wǎng)格點和直尺畫圖:

畫出△ABC中:

AC邊上的中線BD;

AC邊上的高線BE

(3)寫出△ABD的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=AC,BAC=αα60°),點DABC內(nèi),且BD=BC,DBC=60°.

1)如圖1, 連接AD,直接寫出∠ABD的度數(shù)(用含α的式子表示);

2)如圖2,BCE=150°,ABE=60°,判斷ABE的形狀并加以證明;

3)在(2)的條件下,連接DE,若∠DEC=45°,求α的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】動漫節(jié)開幕前,某動漫公司預(yù)測某種動漫玩具能夠暢銷,就分兩批分別用32000元和68000元購進(jìn)了這種玩具銷售,其中第二批購進(jìn)數(shù)量是第一批購進(jìn)數(shù)量的2倍,但每套進(jìn)價多了10元.

(1)該動漫公司這兩批各購進(jìn)多少套玩具?

(2)如果這兩批玩具每套售價相同,且全部銷售后總利潤不少于20000元,那么每套售價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 是一塊邊長為4米的正方形苗圃,園林部門將其改造為矩形的形狀,其中點邊上,點的延長線上, 設(shè)的長為米,改造后苗圃的面積為平方米.

(1) 之間的函數(shù)關(guān)系式為 (不需寫自變量的取值范圍);

(2)根據(jù)改造方案,改造后的矩形苗圃的面積與原正方形苗圃的面積相等,請問此時的長為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲轉(zhuǎn)盤被分成3個面積相等的扇形、乙轉(zhuǎn)盤被分成2個面積相等的扇形.小夏和小秋利用它們來做決定獲勝與否的游戲.規(guī)定小夏轉(zhuǎn)甲盤一次、小秋轉(zhuǎn)乙盤一次為一次游戲(當(dāng)指針指在邊界線上時視為無效,重轉(zhuǎn)).

(1)小夏說:“如果兩個指針?biāo)竻^(qū)域內(nèi)的數(shù)之和為6或7,則我獲勝;否則你獲勝”.按小夏設(shè)計的規(guī)則,請你寫出兩人獲勝的可能性分別是多少?

(2)請你對小夏和小秋玩的這種游戲設(shè)計一種公平的游戲規(guī)則,并用一種合適的方法(例如:樹狀圖,列表)說明其公平性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,相交于點,上一點,上一點,且。

(1)求證:

(2)若,求的度數(shù)。

查看答案和解析>>

同步練習(xí)冊答案