如圖,小俊在A處利用高為1.8米的測(cè)角儀AB測(cè)得樓EF頂部E的仰角為30°,然后前進(jìn)12米到達(dá)C處,又測(cè)得樓頂E的仰角為60°,求樓EF的高度.(結(jié)果精確到0.1米)(參考數(shù)據(jù): =1.414, =1.732)
【考點(diǎn)】解直角三角形的應(yīng)用-仰角俯角問(wèn)題.
【分析】設(shè)樓EF的高為x米,根據(jù)正切的概念用x表示出DG、BG,根據(jù)題意列出方程,解方程即可.
【解答】解:設(shè)樓EF的高為x米,則EG=EF﹣GF=(x﹣1.8)米,
由題意得:EF⊥AF,DC⊥AF,BA⊥AF,BD⊥EF,
在Rt△EGD中,DG==(x﹣1.8),
在Rt△EGB中,BG=(x﹣1.8),
∴CA=DB=BG﹣DG=(x﹣1.8),
∵CA=12米,
∴(x﹣1.8)=12,
解得:x=6+1.8≈12.2,
答:樓EF的高度約為12.2米.
【點(diǎn)評(píng)】本題考查的是解直角三角形的應(yīng)用﹣仰角俯角問(wèn)題,正確理解仰角和俯角的概念、熟記銳角三角函數(shù)的定義是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
圖1是小明在健身器材上進(jìn)行仰臥起坐鍛煉時(shí)情景.圖2是小明鍛煉時(shí)上半身由EM位置運(yùn)動(dòng)到與地面垂直的EN位置時(shí)的示意圖.已知BC=0.64米,AD=0.24米,α=18°.(sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)
(1)求AB的長(zhǎng)(精確到0.01米);
(2)若測(cè)得EN=0.8米,試計(jì)算小明頭頂由M點(diǎn)運(yùn)動(dòng)到N點(diǎn)的路徑弧MN的長(zhǎng)度(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知:如圖,在直角坐標(biāo)系中,有菱形OABC,A點(diǎn)的坐標(biāo)為(10,0),對(duì)角線OB、AC相交于D點(diǎn),雙曲線y=(x>0)經(jīng)過(guò)D點(diǎn),交BC的延長(zhǎng)線于E點(diǎn),且OB•AC=160,有下列四個(gè)結(jié)論:
①雙曲線的解析式為y=(x>0);②E點(diǎn)的坐標(biāo)是(5,8);③sin∠COA=;④AC+OB=12.其中正確的結(jié)論有( 。
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
下列運(yùn)算正確的是( )
A.a(chǎn)3+a3=a6 B.2(a+b)=2a+b C.(ab)﹣2=ab﹣2 D.a(chǎn)6÷a2=a4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
2011年北京春季房地產(chǎn)展示交易會(huì)期間,某公司對(duì)參加本次房交會(huì)的消費(fèi)者的年收入和打算購(gòu)買住房面積這兩項(xiàng)內(nèi)容進(jìn)行了隨機(jī)調(diào)查,共發(fā)放100份問(wèn)卷,并全部收回.統(tǒng)計(jì)相關(guān)數(shù)據(jù)后,制成了如下的統(tǒng)計(jì)表和統(tǒng)計(jì)圖:
消費(fèi)者年收入統(tǒng)計(jì)表
年收入(萬(wàn)元) | 4.8 | 6 | 9 | 12 | 24 |
被調(diào)查的消費(fèi)者數(shù)(人) | 10 | 50 | 30 | 9 | 1 |
請(qǐng)你根據(jù)以上信息,回答下列問(wèn)題:
(1)補(bǔ)全統(tǒng)計(jì)表和統(tǒng)計(jì)圖;
(2)打算購(gòu)買住房面積小于100平方米的消費(fèi)者人數(shù)占被調(diào)查人數(shù)的百分比為 ;
(3)求被調(diào)查的消費(fèi)者平均每人年收入為多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
嘉淇想證明三角形內(nèi)角和是180°和其他一些的命題.請(qǐng)完成下列一些命題和證明.
(1)怎樣證明三角形內(nèi)角和是180°呢?
(2)已知命題:等腰三角形底邊上的中線和頂角的角平分線重合,證明這個(gè)命題,并寫出它的逆命題,逆命題成立嗎?
命題: 底邊上的中線和頂角的角平分線重合的三角形是等腰三角形
證明: 證明:在△ABD和△ACD中,
∵,
∴△ABD≌△ACD(SSS),
∴∠BAD=∠CAD
由此我們不難發(fā)現(xiàn): 此命題是互逆命題
那么怎樣證明呢?請(qǐng)寫出證明過(guò)程.(可以畫出作圖痕跡.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長(zhǎng)交⊙O于點(diǎn)E,連結(jié)EC.若AB=8,CD=2,則sin∠ECB為( 。
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com