【題目】在方格紙中,每個方格的頂點叫做格點,以格點連線為邊的三角形叫做格點三角形.如圖甲中,每個小正方形的邊長為1,以線段AB為一邊的格點三角形隨著第三個頂點的位置不同而發(fā)生變化.
(1)根據(jù)圖甲,填寫下表,并計算出格點三角形面積的平均值;
格點三角形面積 | 1 | 2 | 3 | 4 |
頻數(shù) |
(2)在圖乙中,所給的方格紙大小與圖甲一樣,如果以線段CD為一邊,作格點三角形,試填寫下表,并計算出格點三角形面積的平均值;
格點三角形面積 | 1 | 2 | 3 | 4 |
頻數(shù) |
(3)如果將圖乙中格點三角形面積記為s,頻數(shù)記為x,根據(jù)你所填寫的數(shù)據(jù),猜測s與x之間存在哪種函數(shù)關系,并求出函數(shù)關系式.
【答案】(1)表格見解析,2.5;(2)表格見解析,2;(3)s是x的一次函數(shù),s與x的函數(shù)關系式為s=-x+5.
【解析】
(1)根據(jù)三角形的面積公式即可得到結論;
(2)依據(jù)三角形的面積公式進行填表,然后依據(jù)加權平均數(shù)公式進行計算即可;
(3)先依據(jù)表格探究出y與x的函數(shù)關系式,然后利用待定系數(shù)法求解即可.
(1)填寫表格為:
格點三角形面積 | 1 | 2 | 3 | 4 |
頻數(shù) | 5 | 5 | 5 | 5 |
格點三角形面積的平均值=;
(2)填表如下:
格點三角形面積 | 1 | 2 | 3 | 4 |
頻數(shù) | 8 | 6 | 4 | 2 |
格點三角形面積的平均值=;
(3)y是x的一次函數(shù).
設y=kx+b,將x=8,y=1;x=6,y=2代入得:
,
解得:k=-,b=5.
∴y=-x+5.
當x=3時,y=3,當x=2時,y=4符合函數(shù)的解析式.
∴y與x的函數(shù)關系式為y=-x+5.
科目:初中數(shù)學 來源: 題型:
【題目】國家為支持大學生創(chuàng)業(yè),提供小額無息貸款,學生王芳享受政策無息貸款元用來代理品牌服裝的銷售.已知該品牌服裝進價每件元,日銷售(件)與銷售價(元/件)之間的關系如圖所示(實線),每天付員工的工資每人每天元,每天應支付其它費用元.
求日銷售(件)與銷售價(元/件)之間的函數(shù)關系式;
若暫不考慮還貸,當某天的銷售價為元/件時,收支恰好平衡(收入支出),求該店員工人數(shù);
若該店只有名員工,則該店至少需要多少天才能還清貸款,此時,每件服裝的價格應定為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑, BC交⊙O于點D,E是的中點,連接AE交BC于點F,∠ACB =2∠EAB.
(1)求證:AC是⊙O的切線;
(2)若,,求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)證明推斷:如圖(1),在正方形ABCD中,點E,Q分別在邊BC,AB上,DQ⊥AE于點O,點G,F分別在邊CD,AB上,GF⊥AE.
①求證:DQ=AE;
②推斷:的值為 ;
(2)類比探究:如圖(2),在矩形ABCD中,=k(k為常數(shù)).將矩形ABCD沿GF折疊,使點A落在BC邊上的點E處,得到四邊形FEPG,EP交CD于點H,連接AE交GF于點O.試探究GF與AE之間的數(shù)量關系,并說明理由;
(3)拓展應用:在(2)的條件下,連接CP,當k=時,若tan∠CGP=,GF=2,求CP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某景區(qū)內有一塊矩形油菜花田地(數(shù)據(jù)如圖示,單位:m.)現(xiàn)在其中修建一條觀花道(圖中陰影部分)供游人賞花.設改造后剩余油菜花地所占面積為ym2.
(1)求y與x的函數(shù)表達式;
(2)若改造后觀花道的面積為13m2,求x的值;
(3)若要求 0.5≤ x ≤1,求改造后剩余油菜花地所占面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,放置的△OAB1,△B1A1B2,△B2A2B3,都是邊長為2的等邊三角形,邊AO在Y軸上,點B1、B2、B3都在直線y=x上,則點A2019的坐標為__________________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究:如圖①,直線l1∥l2∥l3,點C在l2上,以點C為直角頂點作∠ACB=90°,角的兩邊分別交l1與l3于點A、B,連結AB,過點C作CD⊥l1于點D,延長DC交l3于點E.
(1)求證:△ACD∽△CBE.
(2)應用:如圖②,在圖①的基礎上,設AB與l2的交點為F,若AC=BC,l1與l2之間的距離為2,l2與l3之間的距離為1,則AF的長度是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在 10×6 的正方形網格中,每個小正方形的邊長均為 1,線段 AB 的端點 A、B 均在小正方形的頂點上.
(1)在圖中畫出以 AB 為一腰的等腰△ABC,點 C 在小正方形頂點上,△ABC 為鈍角三角形,且△ABC 的面積為;
(2)在圖中畫出以 AB 為斜邊的直角三角形 ABD, 點 D在小正方形的頂點上,且 AD>BD;
(3)連接 CD,請你直接寫出線段 CD 的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com