【題目】已知二次函數(shù)yax2+bx+ca≠0).

1)若b1,a=﹣c,求證:二次函數(shù)的圖象與x軸一定有兩個(gè)不同的交點(diǎn);

2)若a0,c0,且對于任意的實(shí)數(shù)x,都有y1,求4a+b2的取值范圍;

3)若函數(shù)圖象上兩點(diǎn)(0y1)和(1,y2)滿足y1y20,且2a+3b+6c0,試確定二次函數(shù)圖象對稱軸與x軸交點(diǎn)橫坐標(biāo)的取值范圍.

【答案】1)見解析;(2 ;(3

【解析】

1)根據(jù)已知條件計(jì)算一元二次方程的判別式即可證得結(jié)論;

2)根據(jù)已知條件求得拋物線的頂點(diǎn)縱坐標(biāo),再整理即可;

3)將(0,y1)和(1y2)分別代入函數(shù)解析式,由y1y20,及2a+3b+6c0,得不等式組,變形即可得出答案.

解:(1)證明:∵yax2+bx+ca≠0),

y0得:ax2+bx+c0

∵b1,a=﹣c,

∴△b24ac14(﹣cc1+2c2,

∵2c2≥0,

∴1+2c20,即0,

二次函數(shù)的圖象與x軸一定有兩個(gè)不同的交點(diǎn);

2∵a0c0,

拋物線的解析式為yax2+bx,其圖象開口向下,

對于任意的實(shí)數(shù)x,都有y≤1

頂點(diǎn)縱坐標(biāo),

b2≥4a,

∴4a+b2≤0;

3)由2a+3b+6c0,可得6c=﹣(2a+3b),

函數(shù)圖象上兩點(diǎn)(0,y1)和(1y2)滿足y1y20,

∴ca+b+c)>0,

∴6c6a+6b+6c)>0,

6c=﹣(2a+3b)代入上式得,﹣(2a+3b)(4a+3b)>0,

2a+3b)(4a+3b)<0

∵a≠0,則9a20,

兩邊同除以9a2得,

,

,

二次函數(shù)圖象對稱軸與x軸交點(diǎn)橫坐標(biāo)的取值范圍是:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上OA兩點(diǎn)的距離為4,一動點(diǎn)P從點(diǎn)A出發(fā),按以下規(guī)律跳動:第1次跳動到AO的中點(diǎn)A1處,第2次從A1點(diǎn)跳動到A1O的中點(diǎn)A2處,第3次從A2點(diǎn)跳動到A2O的中點(diǎn)A3處,按照這樣的規(guī)律繼續(xù)跳動到點(diǎn)A4,A5A6,An.(n≥3,n是整數(shù))處,那么線段AnA的長度為________n≥3n是整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=3.點(diǎn)E在線段BA上從B點(diǎn)以每秒1個(gè)單位的速度出發(fā)向A點(diǎn)運(yùn)動,F(xiàn)是射線CD上一動點(diǎn),在點(diǎn)E、F運(yùn)動的過程中始終保持EF=5,CF>BE,點(diǎn)PEF的中點(diǎn),連接AP.設(shè)點(diǎn)E運(yùn)動時(shí)間為ts

(1)在點(diǎn)E、F運(yùn)動的過程中,AP的長度存在一個(gè)最小值,當(dāng)AP的長度取得最小值時(shí),點(diǎn)P的位置應(yīng)該在

(2)當(dāng)AP⊥EF時(shí),求出此時(shí)t的值

(3)以P為圓心作⊙P,當(dāng)P與矩形ABCD三邊所在直線都相切時(shí),求出此時(shí)t的值,并指出此時(shí)P的半徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)B坐標(biāo)為(0,m)(m0),點(diǎn)Ax軸正半軸上,直線AB經(jīng)過點(diǎn)A,B,且tanBAO2

1)若點(diǎn)A的坐標(biāo)為(30),求直線AB的表達(dá)式;

2)反比例函數(shù)y的圖象與直線AB交于第一象限的C、D兩點(diǎn)(BDBC),當(dāng)AD2DB時(shí),求k1的值(用含m的式子表示);

3)在(1)的條件下,設(shè)線段AB的中點(diǎn)為E,過點(diǎn)Ex軸的垂線,垂足為M,交反比例函數(shù)y的圖象于點(diǎn)F.分別連接OEOF,當(dāng)△OEF與△OBE相似時(shí),請直接寫出滿足條件的k2值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將的邊繞著點(diǎn)順時(shí)針旋轉(zhuǎn)得到,邊AC繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到,聯(lián)結(jié).當(dāng)時(shí),我們稱的“雙旋三角形”.如果等邊的邊長為a,那么它的“雙旋三角形”的面積是__________(用含a的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司選派兩人參加年度培訓(xùn),小穎媽媽、張阿姨、李阿姨和王阿姨都報(bào)了名,若從4人中隨機(jī)選派2

1)“小穎被選派”是   事件,“小穎媽媽被選派”是   事件.(填“不可能”或“必然“或“隨機(jī)”)

2)試用畫樹狀圖或列表的方法表示這次選派所有可能的結(jié)果,并求出“小穎媽媽被選派”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線ly=﹣x+4分別與x軸、y軸交于點(diǎn)A,B,雙曲線k0,x0)與直線l不相交,E為雙曲線上一動點(diǎn),過點(diǎn)EEGx軸于點(diǎn)G,EFy軸于點(diǎn)F,分別與直線l交于點(diǎn)CD,且∠COD45°,則k_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ABC90°,AB4,∠CAB30°,以AB的中點(diǎn)為圓心,OA的長為半徑作半圓交AC于點(diǎn)D,則圖中陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)A-10)、點(diǎn)B30)、點(diǎn)C4,y1),若點(diǎn)Dx2y2)是拋物線上任意一點(diǎn),有下列結(jié)論:①二次函數(shù)y=ax2+bx+c的最小值為-4a;②若-1≤x2≤4,則0≤y2≤5a;③若y2y1,則x24;④一元二次方程cx2+bx+a=0的兩個(gè)根為-1.其中正確結(jié)論的個(gè)數(shù)是( 。

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步練習(xí)冊答案