【題目】“圓材埋壁”是我國古代著名數學著作《九章算術》中的一個問題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何”此問題的實質就是解決下面的問題:“如圖,CD為⊙O的直徑,弦AB⊥CD于點E,CE=1,AB=10,求CD的長”.根據題意可得CD的長為 .
科目:初中數學 來源: 題型:
【題目】先閱讀下列解題過程,然后回答問題:
解方程:
解:①當≥0時,原方程可化為: ,解得;
②當<0時,原方程可化為: ,解得;
所以原方程的解是或
(1)解方程:
(2)探究:當為何值時,方程 ①無解;②只有一個解;③有兩個解。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線經過第一象限內一點A,且OA=4過點A作AB⊥x軸于點B,將△ABO繞點B逆時針旋轉60°得到△CBD,則點C的坐標為( )
A. (,2) B. (,1)
C. (-2,) D. (-1,)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了更好改善河流的水質,治污公司決定購買10臺污水處理設備現有A,B兩種型號的設備,其中每臺的價格,月處理污水量如下表:經調查:購買一臺A型設備比購買一臺B型設備多2萬元,購買2臺A型設備比購買3臺B型設備少6萬元.
A型 | B型 | |
價格萬元臺 | a | b |
處理污水量噸月 | 240 | 200 |
求a,b的值;
治污公司經預算購買污水處理設備的資金不超過105萬元,你認為該公司有哪幾種購買方案;
在的條件下,若每月要求處理污水量不低于2040噸,為了節(jié)約資金,請你為治污公司設計一種最省錢的購買方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,P是第一象限角平分線上的一點,且P點的橫坐標為3.把一塊三角板的直角頂點固定在點P處,將此三角板繞點P旋轉,在旋轉的過程中設一直角邊與x軸交于點E,另一直角邊與y軸交于點F,若△POE為等腰三角形,則點F的坐標為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀解題過程,回答問題.
如圖,OC在∠AOB內,∠AOB和∠COD都是直角,且∠BOC=30°,求∠AOD的度數.
解:過O點作射線OM,使點M,O,A在同一直線上.
因為∠MOD+∠BOD=90°,∠BOC+∠BOD=90°,所以∠BOC=∠MOD,
所以∠AOD=180°-∠BOC=180°-30°=150°.
(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?
(2)如果∠AOB=∠DOC=x°,∠AOD=y°,求∠BOC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一條筆直的公路上有A、B兩地,甲騎自行車從A地到B地;乙騎摩托車從B地到A地,到達A地后立即按原路返回.如圖是甲、乙兩人離B地的距離y(km)與行駛時間x(h)之間的函數圖象,根據圖象解答以下問題:
(1)直接寫出y甲,y乙與x之間的函數關系式(不寫過程);
(2)①求出點M的坐標,并解釋該點坐標所表示的實際意義;
②根據圖象判斷,x取何值時,y乙>y甲.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】學校組織社會大課堂活動去首都博物館參觀,明明提前上網做了功課,查到了下面的一段文字:
首都博物館建筑本身是一座融古典美和現代美于一體的建筑藝術品,既具有濃郁的民族特色,又呈現鮮明的現代感.首都博物館建筑物(地面以上)東西長152米、南北寬66米左右,建筑高度41米.建筑內部分為三棟獨立的建筑,即:矩形展館,橢圓形專題展館,條形的辦公科研樓.橢圓形的青銅展館斜出墻面寓意古代文物破土而出,散發(fā)著濃郁的歷史氣息.
明明對首都博物館建筑物產生了濃厚的興趣,站到首都博物館北廣場,他被眼前這座建筑物震撼了.整個建筑宏大壯觀,斜出的青銅展館和北墻面交出一條拋物線,拋物線與外立面之間和諧、統(tǒng)一,明明走到過街天橋上照了一張照片(如圖所示).明明想了想,算了算,對旁邊的文文說:“我猜想這條拋物線的頂點到地面的距離應是15.7米左右.” 文文反問:“你猜想的理由是什么”?明明說:“我的理由是”. 明明又說:“不過這只是我的猜想,這次準備不充分,下次來我要用學過的數學知識準確的測測這個高度,我想用學到的知識, 我要帶等測量工具”.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面材料:
在數學課上,老師請同學思考如下問題:
請利用直尺和圓規(guī)確定圓中弧AB所在圓的圓心
小亮的作法如下:
如圖:
① 在弧AB上任意取一點C,分別連接AC,BC
②分別作AC,BC的垂直平分線,兩條垂線平分線交于O點,所以點O就是所求弧AB的圓心
老師說:“小亮的作法正確.”
請你回答:小亮的作圖依據是 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com