【題目】為了更好改善河流的水質(zhì),治污公司決定購(gòu)買(mǎi)10臺(tái)污水處理設(shè)備現(xiàn)有A,B兩種型號(hào)的設(shè)備,其中每臺(tái)的價(jià)格,月處理污水量如下表:經(jīng)調(diào)查:購(gòu)買(mǎi)一臺(tái)A型設(shè)備比購(gòu)買(mǎi)一臺(tái)B型設(shè)備多2萬(wàn)元,購(gòu)買(mǎi)2臺(tái)A型設(shè)備比購(gòu)買(mǎi)3臺(tái)B型設(shè)備少6萬(wàn)元.
A型 | B型 | |
價(jià)格萬(wàn)元臺(tái) | a | b |
處理污水量噸月 | 240 | 200 |
求a,b的值;
治污公司經(jīng)預(yù)算購(gòu)買(mǎi)污水處理設(shè)備的資金不超過(guò)105萬(wàn)元,你認(rèn)為該公司有哪幾種購(gòu)買(mǎi)方案;
在的條件下,若每月要求處理污水量不低于2040噸,為了節(jié)約資金,請(qǐng)你為治污公司設(shè)計(jì)一種最省錢(qián)的購(gòu)買(mǎi)方案.
【答案】(1)依題意得:
解之得:
(2)設(shè)購(gòu)買(mǎi)A型設(shè)備x臺(tái),購(gòu)買(mǎi)B型設(shè)備(10-x)臺(tái),
依題意得:12x+10(10-x)≤105
x≤2.5
所以該公司共有三種購(gòu)買(mǎi)方案:
方案一,A型設(shè)備0臺(tái),B型設(shè)備10臺(tái)
方案二,A型設(shè)備1臺(tái),B型設(shè)備9臺(tái)
方案三,A型設(shè)備2臺(tái),B型設(shè)備8臺(tái)
(3)在(2)問(wèn)條件下,若要每月處理污水量不低于2040噸,則:
240x+200(10-x)≥2040
x≥1
所以x取1或2
若x=1,則需資金1×12+9×10=102萬(wàn)
若x=2,則需資金2×12+8×10=104萬(wàn)
因此為了節(jié)約資金,應(yīng)選擇方案二,即A型設(shè)備1臺(tái),B型設(shè)備9臺(tái)。
【解析】
(1)因?yàn)橘?gòu)買(mǎi)一臺(tái)A型設(shè)備比購(gòu)買(mǎi)一臺(tái)B型設(shè)備多2萬(wàn)元,購(gòu)買(mǎi)2臺(tái)A型設(shè)備比購(gòu)買(mǎi)3臺(tái)B型設(shè)備少6萬(wàn)元,所以有,解之即可;
(2)可設(shè)購(gòu)買(mǎi)污水處理設(shè)備A型設(shè)備x臺(tái),B型設(shè)備(10-x)臺(tái),則有12x+10(10-x)≤105,解之確定x的值,即可確定方案;
(3)因?yàn)槊吭乱筇幚硌鬄懞奈鬯坎坏陀?/span>2040噸,所以有240x+180(10-x)≥2040,解之即可由x的值確定方案,然后進(jìn)行比較,作出選擇.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在方格紙中,每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度,△ABC的頂點(diǎn)都在格點(diǎn)上.
(1)畫(huà)出△ABC先向右平移6格,再向上平移1格所得的△A′B′C′;
(2)畫(huà)出△ABC的AB邊上的中線(xiàn)CD和高線(xiàn)CE;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,反比例函數(shù) 的圖象過(guò)點(diǎn)A(1,6).
(1)求反比例函數(shù)的表達(dá)式;
(2)過(guò)點(diǎn)A的直線(xiàn)與反比例函數(shù) 圖象的另一個(gè)交點(diǎn)為B,與x軸交于點(diǎn)P,若AP=2PB,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),點(diǎn)和點(diǎn)是坐標(biāo)軸上兩點(diǎn),點(diǎn)為坐標(biāo)軸上一點(diǎn),若三角形的面積為,則點(diǎn)坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,點(diǎn)C在AOB的一邊OA上,過(guò)點(diǎn)C的直線(xiàn)DE//OB,CF平分ACD,CG CF于C .
(1)若O =40,求ECF的度數(shù);
(2)求證:CG平分OCD;
(3)當(dāng)O為多少度時(shí),CD平分OCF,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB=DB,∠1=∠2,請(qǐng)問(wèn)添加下面哪個(gè)條件不能判斷△ABC≌△DBE的是( 。
A. BC=BE B. ∠A=∠D C. ∠ACB=∠DEB D. AC=DE
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“圓材埋壁”是我國(guó)古代著名數(shù)學(xué)著作《九章算術(shù)》中的一個(gè)問(wèn)題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長(zhǎng)一尺,問(wèn)徑幾何”此問(wèn)題的實(shí)質(zhì)就是解決下面的問(wèn)題:“如圖,CD為⊙O的直徑,弦AB⊥CD于點(diǎn)E,CE=1,AB=10,求CD的長(zhǎng)”.根據(jù)題意可得CD的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)3×3的方格中填寫(xiě)了9個(gè)數(shù)字,使得每行、每列、每條對(duì)角線(xiàn)上的三個(gè)數(shù)之和相等,得到的3×3的方格稱(chēng)為一個(gè)三階幻方.
(1)在圖1中空格處填上合適的數(shù)字,使它構(gòu)成一個(gè)三階幻方;
(2)如圖2的方格中填寫(xiě)了一些數(shù)和字母,當(dāng)x+y的值為多少時(shí),它能構(gòu)成一個(gè)三階幻方.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與實(shí)踐
情境再現(xiàn):
舉世矚目的港珠澳大橋東接香港,西接珠海、澳門(mén),全長(zhǎng)千米,是世界上最長(zhǎng)的跨海大橋,被譽(yù)為“新世界七大奇跡”之一.如圖,香港口岸點(diǎn)至珠?诎饵c(diǎn)約千米,海底隧道全長(zhǎng)約千米,隧道一端的東人工島點(diǎn)到香港口岸的路程為千米.某一時(shí)刻,一輛穿梭巴士從香港口岸發(fā)車(chē),沿港珠澳大橋開(kāi)往珠?诎.分鐘后,一輛私家車(chē)也從香港口岸出發(fā)沿港珠澳大橋開(kāi)往珠?诎.在私家車(chē)出發(fā)的同時(shí),一輛大客車(chē)從珠海口岸出發(fā)開(kāi)往香港口岸.已知穿梭巴士的平均速度為千米/時(shí),大客車(chē)的平均速度為千米/時(shí),私家車(chē)的平均速度為千米/時(shí).
問(wèn)題解決:
(1)穿梭巴士出發(fā)多長(zhǎng)時(shí)間與大客車(chē)相遇?
(2)私家車(chē)能否在到達(dá)珠?诎肚白飞洗┧蟀褪?說(shuō)明理由;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com