11.若關(guān)于x,y的方程5xm-n-6y3-n=3是二元一次方程,則m=3,n=2.

分析 二元一次方程滿足的條件:含有2個未知數(shù),未知數(shù)的項的次數(shù)是1的整式方程.則x,y的指數(shù)都是1,即可得到一個關(guān)于m,n的方程,從而求解.

解答 解:根據(jù)題意,得:$\left\{\begin{array}{l}{m-n=1}\\{3-n=1}\end{array}\right.$
解得:$\left\{\begin{array}{l}{m=3}\\{n=2}\end{array}\right.$
故答案為:3,2.

點評 主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特點:含有2個未知數(shù),未知數(shù)的項的次數(shù)是1的整式方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

8.如圖所示的幾何體是由5個大小相同的小正方體緊密擺放而成的,其三視圖中面積最小的是( 。
A.主視圖B.左視圖C.俯視圖D.左視圖和俯視圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.如圖1,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,D、E分別為邊AB、AC的中點,連結(jié)DE,點P從點A出發(fā),沿折線AE-ED-DB運動,到點B停止.點P在折線AE-ED上以每秒1個單位的速度運動,在DB上以每秒$\sqrt{5}$個單位的速度運動.過點P作PQ⊥BC于點Q,以PQ為邊在PQ右側(cè)作正方形PQMN,使點M落在線段BC上.設(shè)點P的運動時間為t秒(t>0).
(1)在整個運動過程中,求正方形PQMN的頂點N落在AB邊上時對應(yīng)的t的值;
(2)連結(jié)BE,設(shè)正方形PQMN與△BED重疊部分圖形的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式和相應(yīng)的自變量t的取值范圍;
(3)當正方形PQMN頂點P運動到與點E重合時,將正方形PQMN繞點Q逆時針旋轉(zhuǎn)60°得正方形P1QM1N1,問在直線DE與直線AC上是否存在點G和點H,使△GHP1是等腰直角三角形?若存在,請求出EG的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.某中學(xué)在開學(xué)前去商場購進A、B兩種品牌的足球,購買A品牌足球共花費3000元,購買B品牌足球共花費1600元,且購買A品牌足球數(shù)量是購買B品牌足球的3倍,已知購買一個B品牌足球比購買一個A品牌足球多花30元.(1)求購買一個A品牌、一個B品牌足球各需多少元?
(2)為了進一步發(fā)展“校園足球”,學(xué)校在開學(xué)后再次購進了A、B兩種品牌的足球,每種品牌的足球不少于15個,總花費恰好為2268元,且在購買時,商場對兩種品牌的足球的銷售單價進行了調(diào)整,A品牌足球銷售單價比第一次購買時提高了8%,B品牌足球按第一次購買時銷售單價的9折出售.那么此次有哪些購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.某乳品公司向某地運輸一批牛奶,由鐵路運輸每千克需運費0.60元,由公路運輸,每千克需運費0.30元,另需補助600元.
(1)設(shè)該公司運輸?shù)倪@批牛奶為x千克,選擇鐵路運輸時,所需運費為y1元,選擇公路運輸時,所需運費為y2元,請分別寫出y1、y2與x之間的關(guān)系式;
(2)若公司只支出運費1500元,則選用哪種運輸方式運送的牛奶多?若公司運送1500千克牛奶,則選用哪種運輸方式所需用較少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.解分式方程
(1)$\frac{1}{x}$+$\frac{1}{x+1}$=$\frac{5}{2x+2}$;
(2)$\frac{x-2}{x+2}$-$\frac{16}{{x}^{2}-4}$=$\frac{x+2}{x-2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.先化簡代數(shù)式(1-$\frac{3}{a+2}$)÷$\frac{{a}^{2}-2a+1}{{a}^{2}-4}$,再從0,-2,2,-1,1中選取一個恰當?shù)臄?shù)作為a的值代入求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

20.如圖,五邊形ABCDE中,AB∥CD,∠1,∠2,∠3是五邊形的外角,則∠1+∠2+∠3等于180°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

1.如圖,正方形ABCD位于第一象限,邊長為3,橫坐標為1的點A在直線y=x上,正方形ABCD的邊分別平行于x軸、y軸.若雙曲線y=$\frac{k}{x}$與正方形ABCD公共點,則k的取值范圍是1≤k≤16.

查看答案和解析>>

同步練習(xí)冊答案