【題目】如圖,在平面直角坐標系xOy中,直線AB經(jīng)過點A(6,0)、B(0,6),⊙O的半徑為2(O為坐標原點),點P是直線AB上的一動點,過點P作⊙O的一條切線PQ,Q為切點,則切線長PQ的最小值為( )

A.
B.3
C.3
D.

【答案】D
【解析】連接OP、OQ.

∵PQ是⊙O的切線,

∴OQ⊥PQ;

根據(jù)勾股定理知PQ2=OP2﹣OQ2,

∵當PO⊥AB時,線段PQ最短;

又∵A(﹣6,0)、B(0,6),

∴OA=OB=6,

∴AB=6

∠BOP=45°,即OP是Rt△AOB斜邊上的中線,
∴OP= AB=3 ,

∵OQ=2,

∴PQ= ,

所以答案是:D.

【考點精析】本題主要考查了垂線段最短和直角三角形斜邊上的中線的相關(guān)知識點,需要掌握連接直線外一點與直線上各點的所有線段中,垂線段最短;現(xiàn)實生活中開溝引水,牽牛喝水都是“垂線段最短”性質(zhì)的應(yīng)用;直角三角形斜邊上的中線等于斜邊的一半才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在以下證明中的括號內(nèi)注明理由:

已知:如圖,EFCDF,GHCDH.求證:∠1=3

證明:∵EFCD,GHCD(已知),

EFGH   ).

∴∠1=2   ).

∵∠2=3   ),

∴∠1=3   ).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某高校共有5個大餐廳和2個小餐廳。經(jīng)過測試:同時開放1個大餐廳和2個小餐廳,可供1680名學生就餐;同時開放2個大餐廳和1個小餐廳,可供2280名學生就餐。

(1)1個大餐廳和1個小餐廳分別可供多少名學生就餐?

(2)若7個餐廳同時開放,能否供全校的5300名學生就餐?請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在□ ABCD中,點E、F在對角線BD上,且BEDF.

(1)求證:AECF;

(2)求證:四邊形AECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算(1-32+(-2-(π-5)0-|-2|

2;

3

4 2m3)(2m3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某研究性學習小組在探究矩形的折紙問題時,將一塊直角三角板的直角頂點繞矩形ABCDABBC)的對角線的交點O旋轉(zhuǎn)(),圖中的M、N分別為直角三角形的直角邊與矩形ABCD的邊CDBC的交點.

1)該學習小組成員意外的發(fā)現(xiàn)圖(三角板一直角邊與OD重合)中,BN2CD2+CN2,在圖中(三角板一邊與OC重合),CN2BN2+CD2,請你對這名成員在圖和圖中發(fā)現(xiàn)的結(jié)論選擇其一說明理由.

2)試探究圖BN、CN、CMDM這四條線段之間的數(shù)量關(guān)系,寫出你的結(jié)論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC和∠ABC的平分線相交于點O,過點OEF∥ABBCF,交ACE,過點OOD⊥BCD,下列四個結(jié)論:

①∠AOB=90°+C;AE+BF=EF③當∠C=90°時,E,F分別是AC,BC的中點;④若OD=a,CE+CF=2b,則SCEF=ab其中正確的是( 。

A. ①② B. ③④ C. ①②④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC ,∠BAC=90°,AB=AC,DBC上一動點,連接AD,過點AAEAD,并且始終保持AE=AD,連接CE.

(1)求證△ABD △ACE

(2)若AF平分∠DAEBCF,探究線段BD,DF,F(xiàn)C之間的數(shù)量關(guān)系,并證明;

(3)在(2)的條件下,BD=3,CF=4,AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探究:如圖,在△ABC 中,∠BAC=90°,AB=AC,直線 m 經(jīng)過點 A,BD⊥m 于點 D,CE⊥m 于點 E,求證:△ABD≌△CAE.

應(yīng)用:如圖,在△ABC 中,AB=AC,D、A、E 三點都在直線 m 上,并且有∠BDA=∠AEC=∠BAC,求證:DE=BD+CE.

查看答案和解析>>

同步練習冊答案