【題目】完成下列填空.如右圖,已知AD⊥BC,EF⊥BC,∠1=∠2. 求證: DG∥BA.
證明:∵AD⊥BC,EF⊥BC(已知)
∴∠EFB=∠ADB=90° ( )
∴ ∥ ( )
∴∠1=∠BAD ( )
又∵∠1=∠2 (已知)
∴ (等量代換)
∴DG∥BA. ( )
【答案】見解析
【解析】試題分析:由 AD⊥BC,EF⊥BC得到∠EFB=∠ADB,根據(jù)同位角相等,兩直線平行得到EF∥AD,根據(jù)兩直線平行,同位角相等得到∠1=∠BAD,又由∠1=∠2,根據(jù)等量代換得到∠BAD =∠2,再根據(jù)內(nèi)錯角相等,兩直線平行得到DG∥BA;
試題解析:
∵AD⊥BC,EF⊥BC( 已知)
∴∠EFB=∠ADB=90° (垂直的定義)
∴EF∥AD (同位角相等,兩直線平行)
∴∠1=∠BAD (兩直線平行,同位角相等)
又∵∠1=∠2 (已知)
∴ ∠BAD =∠2 (等量代換)
∴DG∥BA. (內(nèi)錯角相等,兩直線平行)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“五一”期間,某服裝商店舉行促銷活動,全部商品八折銷售,小華購買一件原價為140元的運(yùn)動服,打折后他比按原價購買節(jié)省了元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系XOY中,有A(3 , 2) ,B (-1 ,-4 ),P是X軸上的一點(diǎn),Q是Y軸上的一點(diǎn),若以點(diǎn)A,B,P,Q四個點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,則Q點(diǎn)的坐標(biāo)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=x2的圖象如圖,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A在y軸的正半軸上,點(diǎn)B、C在二次函數(shù)y=x2的圖象上,四邊形OBAC為菱形,且∠OBA=120°,則菱形OBAC的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場購進(jìn)一種每件價格為100元的新商品,在商場試銷發(fā)現(xiàn):銷售單價x(元/件)與每天銷售量y(件)之間滿足如圖所示的關(guān)系:
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)寫出每天的利潤W與銷售單價x之間的函數(shù)關(guān)系式;若你是商場負(fù)責(zé)人,會將售價定為多少,來保證每天獲得的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由于被墨水污染,一道幾何題僅能見到如圖所示的圖形和文字:“如圖,已知:四邊形ABCD中,AD∥BC,∠D=67°,…”
(1)根據(jù)以上信息,你可以求出∠A、∠B、∠C中的哪個角?寫出求解的過程;
(2)若要求出其它的角,請你添上一個適當(dāng)?shù)臈l件: ,并寫出解題過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明與小華本學(xué)期都參加了5次數(shù)學(xué)考試(總分均為100分),數(shù)學(xué)老師想判斷這兩位同學(xué)的數(shù)學(xué)成績誰更穩(wěn)定,在作統(tǒng)計分析時,老師需比較這兩人5次數(shù)學(xué)成績的( )
A. 平均數(shù) B. 方差 C. 眾數(shù) D. 中位數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課外興趣小組活動時,老師提出了如下問題:
(1)如圖1,△ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍.
小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:
延長AD到E,使得DE=AD,再連接BE(或?qū)?/span>△ACD繞點(diǎn)D逆時針旋轉(zhuǎn)180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三邊關(guān)系可得2<AE<8,則1<AD<4.
感悟:解題時,條件中若出現(xiàn)“中點(diǎn)”“中線”字樣,可以考慮構(gòu)造以中點(diǎn)為對稱中心的中心對稱圖形或全等三角形,把分散的已知條件和所求證的結(jié)論集中到同一個三角形中.
(2)問題解決:
受到(1)的啟發(fā),請你證明下面命題:如圖2,在△ABC中,D是BC邊上的中點(diǎn),DE⊥DF,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF.
①求證:BE+CF>EF;②若∠A=90°,探索線段BE、CF、EF之間的等量關(guān)系,并加以證明;
(3)問題拓展:
如圖3,在四邊形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D為頂點(diǎn)作∠EDF為60°角,角的兩邊分別交AB、AC于E、F兩點(diǎn),連接EF,探索線段BE、CF、EF之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com