【題目】已知:在平面直角坐標(biāo)系中,拋物線y=ax2﹣x+3(a≠0)交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,且對(duì)稱軸為直線x=﹣2.
(1)求該拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)若點(diǎn)P(0,t)是y軸上的一個(gè)動(dòng)點(diǎn),請(qǐng)進(jìn)行如下探究: 探究一:如圖1,設(shè)△PAD的面積為S,令W=tS,當(dāng)0<t<4時(shí),W是否有最大值?如果有,求出W的最大值和此時(shí)t的值;如果沒有,說明理由;
探究二:如圖2,是否存在以P、A、D為頂點(diǎn)的三角形與Rt△AOC相似?如果存在,求點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.(參考資料:拋物線y=ax2+bx+c(a≠0)對(duì)稱軸是直線x= )
【答案】
(1)解:∵拋物線y=ax2﹣x+3(a≠0)的對(duì)稱軸為直線x=﹣2.
∴ ,
∴ ,
∴ .
∴D(﹣2,4)
(2)解:探究一:當(dāng)0<t<4時(shí),W有最大值.
∵拋物線 交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,
∴A(﹣6,0),B(2,0),C(0,3),
∴OA=6,OC=3.
當(dāng)0<t<4時(shí),作DM⊥y軸于M,
則DM=2,OM=4.
∵P(0,t),
∴OP=t,MP=OM﹣OP=4﹣t.
∵S三角形PAD=S梯形OADM﹣S三角形AOP﹣S三角形DMP
=
=
=12﹣2t
∴W=t(12﹣2t)=﹣2(t﹣3)2+18
∴當(dāng)t=3時(shí),W有最大值,W最大值=18.
探究二:
存在.分三種情況:
①當(dāng)∠P1DA=90°時(shí),作DE⊥x軸于E,
則OE=2,DE=4,∠DEA=90°,
∴AE=OA﹣OE=6﹣2=4=DE.
∴∠DAE=∠ADE=45°, ,
∴∠P1DE=∠P1DA﹣∠ADE=90°﹣45°=45度.
∵DM⊥y軸,OA⊥y軸,
∴DM∥OA,
∴∠MDE=∠DEA=90°,
∴∠MDP1=∠MDE﹣∠P1DE=90°﹣45°=45度.
∴P1M=DM=2, .
此時(shí) ,
又因?yàn)椤螦OC=∠P1DA=90°,
∴Rt△ADP1∽R(shí)t△AOC,
∴OP1=OM﹣P1M=4﹣2=2,
∴P1(0,2).
∴當(dāng)∠P1DA=90°時(shí),存在點(diǎn)P1,使Rt△ADP1∽R(shí)t△AOC,
此時(shí)P1點(diǎn)的坐標(biāo)為(0,2)
②當(dāng)∠P2AD=90°時(shí),則∠P2AO=45°,
∴ ,
∴ .
∵ ,
∴ .
∴△P2AD與△AOC不相似,此時(shí)點(diǎn)P2不存在.
③當(dāng)∠AP3D=90°時(shí),以AD為直徑作⊙O1,則⊙O1的半徑 ,
圓心O1到y(tǒng)軸的距離d=4.
∵d>r,
∴⊙O1與y軸相離.
不存在點(diǎn)P3,使∠AP3D=90度.
∴綜上所述,只存在一點(diǎn)P(0,2)使Rt△ADP與Rt△AOC相似.
【解析】(1)由拋物線的對(duì)稱軸求出a,就得到拋物線的表達(dá)式了;(2)①下面探究問題一,由拋物線表達(dá)式找出A,B,C三點(diǎn)的坐標(biāo),作DM⊥y軸于M,再由面積關(guān)系:SPAD=S梯形OADM﹣SAOP﹣SDMP得到t的表達(dá)式,從而W用t表示出來,轉(zhuǎn)化為求最值問題.②難度較大,運(yùn)用分類討論思想,可以分三種情況:(1)當(dāng)∠P1DA=90°時(shí);(2)當(dāng)∠P2AD=90°時(shí);(3)當(dāng)AP3D=90°時(shí);思路搞清晰問題就好解決了.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AD=2AB,E、F、G、H分別是AB,BC,CD,AD邊上的點(diǎn),EG⊥FH,F(xiàn)H=2 ,則四邊形EFGH的面積為( )
A.8
B.8
C.12
D.24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在直線跑道上同起點(diǎn)、同終點(diǎn)、同方向勻速跑步500m,先到終點(diǎn)
的人原地休息.已知甲先出發(fā)2s.在跑步過程中,甲、乙兩人的距離y(m)與乙出發(fā)的時(shí)間t(s)之間的關(guān)系
如圖所示,給出以下結(jié)論:①a=8;②b=92;③c=123.其中正確的是【 】
A.①②③ B.僅有①② C.僅有①③ D.僅有②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),∠AOB=45°,點(diǎn)P、Q分別是邊OA,OB上的兩點(diǎn),且OP=2cm.將∠O沿PQ折疊,點(diǎn)O落在平面內(nèi)點(diǎn)C處.
(1)當(dāng)PC∥QB時(shí),OQ=;
(2)當(dāng)PC⊥QB時(shí),求OQ的長.
(3)當(dāng)折疊后重疊部分為等腰三角形時(shí),求OQ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某批彩色彈力球的質(zhì)量檢驗(yàn)結(jié)果如下表:
抽取的彩色彈力球數(shù)n | 500 | 1000 | 1500 | 2000 | 2500 |
優(yōu)等品頻數(shù)m | 471 | 946 | 1426 | 1898 | 2370 |
優(yōu)等品頻率 | 0.942 | 0.946 | 0.951 | 0.949 | 0.948 |
(1)請(qǐng)?jiān)趫D中完成這批彩色彈力球“優(yōu)等品”頻率的折線統(tǒng)計(jì)圖
(2)這批彩色彈力球“優(yōu)等品”概率的估計(jì)值大約是多少?(精確到0.01)
(3)從這批彩色彈力球中選擇5個(gè)黃球、13個(gè)黑球、22個(gè)紅球,它們除了顏色外都相同,將它們放入一個(gè)不透明的袋子中,求從袋子中摸出一個(gè)球是黃球的概率.
(4)現(xiàn)從第(3)問所說的袋子中取出若干個(gè)黑球,并放入相同數(shù)量的黃球,攪拌均勻,使從袋子中摸出一個(gè)黃球的概率為,求取出了多少個(gè)黑球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于點(diǎn)A(m,3)、B(﹣6,n),與x軸交于點(diǎn)C.
(1)求一次函數(shù)y=kx+b的關(guān)系式;
(2)結(jié)合圖象,直接寫出滿足kx+b>的x的取值范圍;
(3)若點(diǎn)P在x軸上,且S△ACP=S△BOC,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,D為AB延長線上一點(diǎn),點(diǎn)E在BC邊上,且BE=BD,連結(jié)AE、DE、DC. ①求證:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,點(diǎn)A是半圓上一個(gè)三等分點(diǎn),點(diǎn)B是 的中點(diǎn),點(diǎn)P是直徑 MN上一動(dòng)點(diǎn),若⊙O的直徑為2,則AP+BP的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題。
(1)計(jì)算:(π﹣3.14)0+( )﹣1+|﹣2 |﹣ .
(2)先化簡,再求值: ÷( ﹣x+1),并從﹣tan60°≤x≤2cos30°取出一個(gè)合適的整數(shù),求出式子的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com