【題目】如圖所示,點A是半圓上一個三等分點,點B是 的中點,點P是直徑 MN上一動點,若⊙O的直徑為2,則AP+BP的最小值是

【答案】
【解析】解:作點B關(guān)于MN的對稱點B′,連接AB′交MN于點P,連接BP,此時AP+BP=AB′最小,連接OB′,如圖所示.
∵點B和點B′關(guān)于MN對稱,
∴PB=PB′.
∵點A是半圓上一個三等分點,點B是 的中點,
∴∠AON=180°÷3=60°,∠B′ON=∠AON÷2=30°,
∴∠AOB′=∠AON+∠B′ON=90°.
∵OA=OB′=1,
∴AB′=
所以答案是:
【考點精析】利用圓心角、弧、弦的關(guān)系對題目進行判斷即可得到答案,需要熟知在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等;在同圓或等圓中,同弧等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面各小題括號里的數(shù),均是它前面的方程的解的是(  )

A. 3x﹣1=5(2) B. +1=0(﹣5,﹣7)

C. x2﹣3x=4(4,1) D. x(x﹣2)(x+4)=0(2,4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平面直角坐標(biāo)系中,拋物線y=ax2﹣x+3(a≠0)交x軸于A、B兩點,交y軸于點C,且對稱軸為直線x=﹣2.
(1)求該拋物線的解析式及頂點D的坐標(biāo);
(2)若點P(0,t)是y軸上的一個動點,請進行如下探究: 探究一:如圖1,設(shè)△PAD的面積為S,令W=tS,當(dāng)0<t<4時,W是否有最大值?如果有,求出W的最大值和此時t的值;如果沒有,說明理由;

探究二:如圖2,是否存在以P、A、D為頂點的三角形與Rt△AOC相似?如果存在,求點P的坐標(biāo);如果不存在,請說明理由.(參考資料:拋物線y=ax2+bx+c(a≠0)對稱軸是直線x=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①所示,空圓柱形容器內(nèi)放著一個實心的“柱錐體”(由一個圓柱和一個同底面的圓錐組成的幾何體).現(xiàn)向這個容器內(nèi)勻速注水,水流速度為5cm3/s,注滿為止.已知整個注水過程中,水面高度h(cm)與注水時間t(s)之間的關(guān)系如圖②所示.請你根據(jù)圖中信息,解答下列問題:

(1)圓柱形容器的高為cm,“柱錐體”中圓錐體的高為cm;
(2)分別求出圓柱形容器的底面積與“柱錐體”的底面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD與正方形EFGH邊長相等,下列說法:

①這個圖案可以看成正方形ABCD繞點O旋轉(zhuǎn)45°前后的圖形共同組成的;

②這個圖案可以看成△ABC繞點O分別旋轉(zhuǎn)45°,90°,135°,180°,225°前后的圖形共同組成的;

③這個圖案可以看成△BOC繞點O分別旋轉(zhuǎn)45°,90°,135°,225°,250°前后的圖形共同組成的.

其中正確的個數(shù)有( )

A. 1個 B. 2個 C. 3個 D. 以上都不對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知Rt△ABC中,∠C=90°,AC=BC,直線m經(jīng)過點C,分別過點A,B作直線m的垂線,垂足分別為點E,F(xiàn),若AE=3,AC=5,則線段EF的長為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A1、A2、A3、…、An(n為正整數(shù))都在數(shù)軸上.點A2在點A1的左邊,且A1A2=1;點A3在點A2的右邊,且A2A3=2;點A4在點A3的左邊,且A3A4=3;…,點A2018在點A2017的左邊,且A2017A2018=2017,若點A2018所表示的數(shù)2018,則點A1所表示的數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明受《烏鴉喝水》故事的啟發(fā),利用量桶和體積相同的小球進行了如下操作:請根據(jù)圖中給出的信息,解答下列問題:

(1)放入一個小球量桶中水面升高   cm;

(2)求放入小球后量桶中水面的高度y(cm)與小球個數(shù)x(個)之間的函數(shù)關(guān)系式;

(3)當(dāng)量桶中水面上升至距離量桶頂部3cm時,應(yīng)在量桶中放入幾個小球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地電話撥號上網(wǎng)有兩種收費方式,用戶可以任選其一:

(A)計時制,0.08/分;

(B)包月制,50/月(限一部個人住宅電話上網(wǎng));

此外,每種上網(wǎng)方式都附加通信費0.02/分.

(1)某用戶某月上網(wǎng)時間為x分鐘,則該用戶在A、B兩種收費方式下應(yīng)支付費用各多少元?

(2)如果一個月內(nèi)上網(wǎng)200分鐘和300分鐘,按兩種收費方式各需交費多少元?

(3)是否存在某一時間,會出現(xiàn)兩種收費方式一樣的情況?如果存在,請求出這時的上網(wǎng)時間.

查看答案和解析>>

同步練習(xí)冊答案