【題目】在某海域,一艘海監(jiān)船在P處檢測到南偏西45°方向的B處有一艘不明船只,正沿正西方向航行,海監(jiān)船立即沿南偏西60°方向以40海里/小時的速度去截獲不明船只,經過1.5小時,剛好在A處截獲不明船只,求不明船只的航行速度.(≈1.41,≈1.73,結果保留一位小數(shù)).

【答案】不明船只的航行速度是14.6海里/小時.

【解析】

PQ垂直于AB的延長線于點Q,在△APQ△BQP中,利用三角函數(shù)的知識分別求出AQ、BQ長,繼而可求得AB長,再根據(jù)時間即可求出速度.

PQ垂直于AB的延長線于點Q

由題意得:∠BPQ45°,∠APQ60°,AP1.5×4060海里,

△APQ中,AQAPsin60°30海里,PQAPcos60°30海里,

△BQP中,∠BPQ45°,

∴PQBQ30海里,

∴ABAQBQ3030≈21.9海里,

14.6海里/小時,

不明船只的航行速度是14.6海里/小時.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是菱形ABCD的對角線AC上的一個動點,過點P垂直于AC的直

線交菱形ABCD的邊于MN兩點.設AC2,BD1APx,AMN的面積為y,則

y關于x的函數(shù)圖象大致形狀是【 】

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點PABC的頂點B出發(fā),沿BCA勻速運動到點A,圖2是點P運動時,線段BP的長度y隨時間x變化的函數(shù)關系圖象,其中M為曲線部分的最低點下列說法錯誤的是( 。

A. ABC是等腰三角形B. AC邊上的高為4

C. ABC的周長為16D. ABC的面積為10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,以AB為直徑的⊙OBC于點D,過點DDEACAC于點E,AC的反向延長線交⊙O于點F

(1)試判斷直線DE與⊙O的位置關系,并說明理由;

(2)若∠C30°,⊙O的半徑為6,求弓形AF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,AB=2,將線段CD繞點C順時針旋轉90°得到線段CE,線段BD繞點B順時針旋轉90°得到線段BF,連接EF,則圖中陰影部分的面積是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+bx+c的對稱軸是x,小亮通過觀察得出了下面四個結論:①c0,②ab+c0,③2a3b0,④5b2c0.其中正確的有(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,在五邊形ABCDE中,ABAE,∠B=∠BAE=∠AED90°,∠CAD45°,試猜想BC,CD,DE之間的數(shù)量關系.小明經過仔細思考,得到如下解題思路:

將△ABC繞點A逆時針旋轉90°至△AEF,由∠B=∠AED90°,得∠DEF180°,即點DE,F三點共線,易證△ACD   ,故BC,CDDE之間的數(shù)量關系是   ;

2)如圖2,在四邊形ABCD中,ABAD,∠ABC+D180°,點E,F分別在邊CBDC的延長線上,∠EAFBAD,連接EF,試猜想EFBE,DF之間的數(shù)量關系,并給出證明.

3)如圖3,在△ABC中,∠BAC90°,ABAC,點D,E均在邊BC上,且∠DAE45°,若BD2,CE3,則DE的長為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+5(a0)交直線y=kx+n(k0)A(1,1),B兩點,交y軸于點C,直線ABy軸于點D.已知該拋物線的對稱軸為直線x=

(1)a,b的值;

(2)記直線AB與拋物線的對稱軸的交點為E,連接CE,CB.若△CEB的面積為,求kn的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)(問題發(fā)現(xiàn))如圖1,在RtABC中,ABAC,∠BAC90°,點DBC的中點,以CD為一邊作正方形CDEF,點E恰好與點A重合,請判斷線段BEAF的數(shù)量關系并寫出推斷過程;

(2)(拓展研究)在(1)的條件下,如果正方形CDEF繞點C旋轉,連接BECE,AF,線段BEAF的數(shù)量關系有無變化?請僅就圖2的情形給出證明;

(3)(結論運用)在(1)(2)的條件下,若△ABC的面積為2,當正方形CDEF旋轉到B,EF三點在同一直線上時,請直接寫出線段AF的長.

查看答案和解析>>

同步練習冊答案