【題目】在某海域,一艘海監(jiān)船在P處檢測到南偏西45°方向的B處有一艘不明船只,正沿正西方向航行,海監(jiān)船立即沿南偏西60°方向以40海里/小時的速度去截獲不明船只,經過1.5小時,剛好在A處截獲不明船只,求不明船只的航行速度.(≈1.41,≈1.73,結果保留一位小數(shù)).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是菱形ABCD的對角線AC上的一個動點,過點P垂直于AC的直
線交菱形ABCD的邊于M、N兩點.設AC=2,BD=1,AP=x,△AMN的面積為y,則
y關于x的函數(shù)圖象大致形狀是【 】
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點P從△ABC的頂點B出發(fā),沿B→C→A勻速運動到點A,圖2是點P運動時,線段BP的長度y隨時間x變化的函數(shù)關系圖象,其中M為曲線部分的最低點下列說法錯誤的是( 。
A. △ABC是等腰三角形B. AC邊上的高為4
C. △ABC的周長為16D. △ABC的面積為10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,過點D作DE⊥AC交AC于點E,AC的反向延長線交⊙O于點F.
(1)試判斷直線DE與⊙O的位置關系,并說明理由;
(2)若∠C=30°,⊙O的半徑為6,求弓形AF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,AB=2,將線段CD繞點C順時針旋轉90°得到線段CE,線段BD繞點B順時針旋轉90°得到線段BF,連接EF,則圖中陰影部分的面積是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c的對稱軸是x=,小亮通過觀察得出了下面四個結論:①c<0,②a﹣b+c>0,③2a﹣3b=0,④5b﹣2c<0.其中正確的有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,在五邊形ABCDE中,AB=AE,∠B=∠BAE=∠AED=90°,∠CAD=45°,試猜想BC,CD,DE之間的數(shù)量關系.小明經過仔細思考,得到如下解題思路:
將△ABC繞點A逆時針旋轉90°至△AEF,由∠B=∠AED=90°,得∠DEF=180°,即點D,E,F三點共線,易證△ACD≌ ,故BC,CD,DE之間的數(shù)量關系是 ;
(2)如圖2,在四邊形ABCD中,AB=AD,∠ABC+∠D=180°,點E,F分別在邊CB,DC的延長線上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關系,并給出證明.
(3)如圖3,在△ABC中,∠BAC=90°,AB=AC,點D,E均在邊BC上,且∠DAE=45°,若BD=2,CE=3,則DE的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+5(a≠0)交直線y=kx+n(k>0)于A(1,1),B兩點,交y軸于點C,直線AB交y軸于點D.已知該拋物線的對稱軸為直線x=.
(1)求a,b的值;
(2)記直線AB與拋物線的對稱軸的交點為E,連接CE,CB.若△CEB的面積為,求k,n的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)(問題發(fā)現(xiàn))如圖1,在Rt△ABC中,AB=AC,∠BAC=90°,點D為BC的中點,以CD為一邊作正方形CDEF,點E恰好與點A重合,請判斷線段BE與AF的數(shù)量關系并寫出推斷過程;
(2)(拓展研究)在(1)的條件下,如果正方形CDEF繞點C旋轉,連接BE,CE,AF,線段BE與AF的數(shù)量關系有無變化?請僅就圖2的情形給出證明;
(3)(結論運用)在(1)(2)的條件下,若△ABC的面積為2,當正方形CDEF旋轉到B,E,F三點在同一直線上時,請直接寫出線段AF的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com