【題目】如圖,在ABCD中,∠ABD的平分線BE交AD于點(diǎn)E,∠CDB的平分線DF交BC于點(diǎn)F.
(1)求證:△ABE≌△CDF;
(2)若AB=DB,猜想:四邊形DFBE是什么特殊的四邊形?并說明理由.
【答案】
(1)證明:∵四邊形ABCD是平行四邊形
AB=CD,∠A=∠C.
AB∥CD,∴∠ABD=∠CDB.
∵BE平分∠ABD,DF平分∠CDB,
∴∠ABE=∠ABD,∠CDF=∠CDB.
∴∠ABE=∠CDF.
在△ABE和△CDF中,
∴△ABE≌△CDF(SAS)
(2)解:四邊形DFBE是矩形.理由如下:
∵AB=DB,BE平分∠ABD,
∴BE⊥AD,即∠DEB=90°.
∵AB=DB,AB=CD,
∴DB=CD.
∵DF平分∠CDB,
∴DF⊥BC,即∠BFD=90°.
在□ABCD中,∵AD∥BC,
∴∠EDF+∠DEB=180°.
∴∠EDF=90°.
∴∠DEB=∠BFD=∠EDF=90°.
∴四邊形DFBE是矩形
【解析】(1)首先利用平行四邊形的想得到AB=CD,∠A=∠C,再利用角平分線的性質(zhì)得到∠ABE=∠CDF,利用ASA證明△ABE≌△CDF;(2)證明∠DEB=∠BFD=∠EDF=90°.即可解決問題..
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【探索新知】:如圖1,射線OC在∠AOB的內(nèi)部,圖中共有3個(gè)角:∠AOB,∠AOC和∠BOC,若其中有一個(gè)角的度數(shù)是另一個(gè)角度數(shù)的兩倍,則稱射線OC是∠AOB的“巧分線”.
(1)一個(gè)角的平分線 這個(gè)角的“巧分線”;(填“是”或“不是”)
(2)如圖2,若∠MPN=α,且射線PQ是∠MPN的“巧分線”,則∠MPQ= ;(用含α的代數(shù)式表示出所有可能的結(jié)果)
【深入研究】:如圖2,若∠MPN=60°,且射線PQ繞點(diǎn)P從PN位置開始,以每秒10°的速度逆時(shí)針旋轉(zhuǎn),當(dāng)PQ與PN成180°時(shí)停止旋轉(zhuǎn),旋轉(zhuǎn)的時(shí)間為t秒.
(3)當(dāng)t為何值時(shí),射線PM是∠QPN的“巧分線”;
(4)若射線PM同時(shí)繞點(diǎn)P以每秒5°的速度逆時(shí)針旋轉(zhuǎn),并與PQ同時(shí)停止,請直接寫出當(dāng)射線PQ是∠MPN的“巧分線”時(shí)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校計(jì)劃購買籃球、排球共20個(gè),購買2個(gè)籃球,3個(gè)排球,共需花費(fèi)190元;購買3個(gè)籃球的費(fèi)用與購買5個(gè)排球的費(fèi)用相同。
(1)籃球和排球的單價(jià)各是多少元?
(2)若購買籃球不少于8個(gè),所需費(fèi)用總額不超過800元.請你求出滿足要求的所有購買方案,并直接寫出其中最省錢的購買方案
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在日歷中任意圈出一個(gè)3×3的正方形,則里面九個(gè)數(shù)不滿足的關(guān)系式是( 。
A. a1+a2+a3+a7+a8+a9=2(a4+a5+a6)
B. a1+a4+a7+a3+a6+a9=2(a2+a5+a8)
C. a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5
D. (a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(0,1),M(3,2),N(4,4).動點(diǎn)P從點(diǎn)A出發(fā),沿軸以每秒1個(gè)單位長的速度向上移動,且過點(diǎn)P的直線也隨之移動,設(shè)移動時(shí)間為秒.
(1)當(dāng)時(shí),求直線的解析式;
(2)若點(diǎn)M,N位于直線的異側(cè),確定的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD折疊使A,C重合,折痕交BC于E,交AD于F,連接AE,CF,AC.
(1)求證:四邊形AECF為菱形;
(2)若AB=4,BC=8,①求菱形AECF的邊長;②求折痕EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A、B、C在數(shù)軸上對應(yīng)的實(shí)數(shù)分別為a、b、c,滿足(b+5)2+|a﹣8|=0,點(diǎn)P位于該數(shù)軸上.
(1)求出a,b的值,并求A、B兩點(diǎn)間的距離;
(2)設(shè)點(diǎn)C與點(diǎn)A的距離為25個(gè)單位長度,且|ac|=﹣ac.若PB=2PC,求點(diǎn)P在數(shù)軸上對應(yīng)的實(shí)數(shù);
(3)若點(diǎn)P從原點(diǎn)開始第一次向左移動1個(gè)單位長度,第二次向右移動3個(gè)單位長度,第三次向左移動5個(gè)單位長度,第四次向右移動7個(gè)單位長度,…(以此類推).則點(diǎn)p 能移動到與點(diǎn)A或點(diǎn)B重合的位置嗎?若能,請?zhí)骄啃枰苿佣嗌俅沃睾?若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD是正方形,G是BC上(除端點(diǎn)外)的任意一點(diǎn),DE⊥AG于點(diǎn)E,BF∥DE,交AG于點(diǎn)F.下列結(jié)論不一定成立的是【 】
A.△AED≌△BFA B.DE﹣BF=EF C.△BGF∽△DAE D.DE﹣BG=FG
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com