【題目】如圖,在ABC中,AB=ACA=36°,BD,CE是角平分線(xiàn),則圖中的等腰三角形共有

A. 8個(gè) B. 7個(gè) C. 6個(gè) D. 5個(gè)

【答案】A

【解析】

根據(jù)三角形內(nèi)角和定理求出∠ABC=ACB=72°,根據(jù)角平分線(xiàn)求出∠ABD=DBC=ACE=ECB=36°,根據(jù)三角形內(nèi)角和定理求出∠BDC、BEC、EOB、DOC,根據(jù)等腰三角形的判定推出即可.

AB=AC,A=36°,

∴∠ABC=ACB=(180°A)=72°,

BD,CE是角平分線(xiàn),

∴∠ABD=DBC=ABC=36°,ACE=ECB=36°,

∴∠A=ABD=ACE,DBC=ECB,

∴∠BDC=180°ACBDBC=180°72°36°=72°,

同理∠BEC=72°,

∴∠BDC=ACB,BEC=EBC,

∴∠EOB=180°BECEBD=180°72°36°=72°,

同理∠DOC=72°,

∴∠BEO=BOE,CDO=COD,

即等腰三角形有OBC,ADB,AEC,BEC,BDC,ABC,EBO,DCO,共8個(gè),

故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AD、CF分別是∠BAC、∠ACB的角平分線(xiàn),且ADCF交于點(diǎn)I, IEBE,下列結(jié)論:①∠BIE=∠CID;②SABCIE(ABBCAC);③BE=(ABBCAC);④ACAFDC.其中正確的結(jié)論是_______________ (填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,AB=BC,點(diǎn)OAC的中點(diǎn),點(diǎn)PAC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A,O,C重合).過(guò)點(diǎn)A,點(diǎn)C作直線(xiàn)BP的垂線(xiàn),垂足分別為點(diǎn)E和點(diǎn)F,連接OE,OF.

(1)如圖1,請(qǐng)直接寫(xiě)出線(xiàn)段OEOF的數(shù)量關(guān)系;

(2)如圖2,當(dāng)∠ABC=90°時(shí),請(qǐng)判斷線(xiàn)段OEOF之間的數(shù)量關(guān)系和位置關(guān)系,并說(shuō)明理由

(3)若|CF﹣AE|=2,EF=2,當(dāng)POF為等腰三角形時(shí),請(qǐng)直接寫(xiě)出線(xiàn)段OP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)B是線(xiàn)段AD上一點(diǎn),△ABC和△BDE分別是等邊三角形,連接AECD

1)求證:AECD;

2)如圖2,點(diǎn)P、Q分別是AE、CD的中點(diǎn),試判斷△PBQ的形狀,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(diǎn),過(guò)點(diǎn)B作BDx軸,交y軸于點(diǎn)D,直線(xiàn)AD交反比例函數(shù)y=的圖象于另一點(diǎn)C,則的值為(  )

A. 1:3 B. 1:2 C. 2:7 D. 3:10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC,AB的垂直平分線(xiàn)MNAC于點(diǎn)D,交AB于點(diǎn)E

1)若∠A40°,求∠DBC的度數(shù);

2)若AE6,△CBD的周長(zhǎng)為20,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)在等邊的邊上,,射線(xiàn)于點(diǎn),點(diǎn)是射線(xiàn)上一動(dòng)點(diǎn),點(diǎn)是線(xiàn)段上一動(dòng)點(diǎn),當(dāng)的值最小時(shí),,則( )

A. 14B. 13C. 12D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某景區(qū)一電瓶小客車(chē)接到任務(wù)從景區(qū)大門(mén)出發(fā),向東走2千米到達(dá)A景區(qū),繼續(xù)向東走2.5千米到達(dá)B景區(qū),然后又回頭向西走8.5千米到達(dá)C景區(qū),最后回到景區(qū)大門(mén).

(1)以景區(qū)大門(mén)為原點(diǎn),向東為正方向,以1個(gè)單位長(zhǎng)表示1千米,建立如圖所示的數(shù)軸,請(qǐng)?jiān)跀?shù)軸上表示出上述A、B、C三個(gè)景區(qū)的位置.

(2)若電瓶車(chē)充足一次電能行走15千米,則該電瓶車(chē)能否在一開(kāi)始充好電而途中不充電的情況下完成此次任務(wù)?請(qǐng)計(jì)算說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知頂點(diǎn)為(﹣3,﹣6)的拋物線(xiàn)y=ax2+bx+c經(jīng)過(guò)點(diǎn)(﹣1,﹣4),則下列結(jié)論中錯(cuò)誤的是(  )

A. b2>4ac

B. ax2+bx+c≥﹣6

C. 若點(diǎn)(﹣2,m),(﹣5,n)在拋物線(xiàn)上,則m>n

D. 關(guān)于x的一元二次方程ax2+bx+c=﹣4的兩根為﹣5和﹣1

查看答案和解析>>

同步練習(xí)冊(cè)答案