【題目】如圖,在ABCD中,AC,BD相交于點O,點E是OA的中點,連接BE并延長交AD于點F,已知S△AEF=4,則下列結(jié)論:①=;②S△BCE=36;③S△ABE=12;④△AEF∽△ACD,其中正確結(jié)論是_________.(把正確結(jié)論的序號都填上)
【答案】①②③
【解析】
根據(jù)平行四邊形的性質(zhì)得到根據(jù)相似三角形的性質(zhì)得到等量代換得到于是得到;故①正確;根據(jù)相似三角形的性質(zhì)得到S△BCE=36;故②正確;根據(jù)三角形的面積公式得到S△ABE=12,故③正確;由于△AEF與△ADC只有一個角相等,于是得到△AEF與△ACD不一定相似,故④錯誤.
解:∵在ABCD中,
∵點E是OA的中點,
∴
∵AD∥BC,
∴△AFE∽△CBE,
∴
∵AD=BC,
∴
∴ ;故①正確;
∵S△AEF=4,
∴S△BCE=36;故②正確;
∵
∴
∴S△ABE=12,故③正確;
∵BF不平行于CD,
∴△AEF與△ADC只有一個角相等,
∴△AEF與△ACD不一定相似,故④錯誤,
故答案為:①②③.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O是△ABC邊AC上一個動點,過O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F.
(1)求證:OE=OF;
(2)若CE=8,CF=6,求OC的長;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車交易市場為了解二手轎車的交易情況,將本市場去年成交的二手轎車的全部數(shù)據(jù),以二手轎車交易前的使用時間為標準分為A、B、C、D、E五類,并根據(jù)這些數(shù)據(jù)由甲,乙兩人分別繪制了下面的兩幅統(tǒng)計圖(圖都不完整).
請根據(jù)以上信息,解答下列問題:
(1)該汽車交易市場去年共交易二手轎車 輛.
(2)把這幅條形統(tǒng)計圖補充完整.(畫圖后請標注相應(yīng)的數(shù)據(jù))
(3)在扇形統(tǒng)計圖中,D類二手轎車交易輛數(shù)所對應(yīng)扇形的圓心角為 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知正方形ABCD的邊長為6,E是CD邊上一點(不與點C 重合),以CE為邊在正方形ABCD的右側(cè)作正方形CEFG,連接BF、BD、FD.
(1)當點E與點D重合時,△BDF的面積為 ;當點E為CD的中點時,△BDF的面積為 .
(2)當E是CD邊上任意一點(不與點C重合)時,猜想S△BDF與S正方形ABCD之間的關(guān)系,并證明你的猜想;
(3)如圖2,設(shè)BF與CD相交于點H,若△DFH的面積為,求正方形CEFG的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.
(1)求二次函數(shù)的表達式;
(2)在y軸上是否存在一點P,使△PBC為等腰三角形.若存在,請求出點P的坐標;
(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M到 達點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標系xOy中的點A和點P,若將點P繞點A逆時針旋轉(zhuǎn)90°后得到點Q,則稱點Q為點P關(guān)于點A的“垂鏈點”,圖1為點P關(guān)于點A的“垂鏈點”Q的示意圖.
(1)如圖2,已知點A的坐標為(0,0),點P關(guān)于點A的“垂鏈點”為點Q;
①若點P的坐標為(3,0),則點Q的坐標為 ;
②若點Q的坐標為(﹣2,﹣1),則點P的坐標為 ;
(2)如圖3,已知點C的坐標為(﹣1,0),點D在直線y=2x﹣2上,若點D關(guān)于點C的“垂鏈點”E在坐標軸上,試求出點D的坐標;
(3)如圖4,在平面直角坐標系xOy,已知點A(2,0),點C是y軸上的動點,點A關(guān)于點C的“垂鏈點”是點B,連接BO、BA,則BO+BA的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接三角形,∠BAC的角平分線AE交⊙O于點E,交BC于點D,過點E作直線l∥BC.
(1)判斷直線l與⊙O的位置關(guān)系,并說明理由;
(2)若在AE上取一點F使EF=BE,求證:BF是∠ABC的平分線;
(3)在(2)的條件下,若DE=3,BE=5,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,對于點P(x,y)和Q(x,y′),給出如下定義:若y′=,則稱點Q為點P的“親密點”.即:當x≥0時,點P(x,y)的“親密點”Q的坐標為(x,y+1);當x<0時,點P(x,y)的“親密點”Q的坐標為(x,-y).例如:點(1,2)的“親密點”為點(1,3),點(-1,3)的“親密點”為點(-1,-3).
(1)點(2,-3)的“親密點”為______;______的“親密點”是(-2,-5).
(2)點M(m+1,5)是一次函數(shù)y=x+3圖象上點N的“親密點”,求點N的坐標.
(3)若點P在函數(shù)y=x2-2x-3的圖象上.則其“親密點”Q的縱坐標y′關(guān)于x的函數(shù)圖象大致正確的是______.
(4)若點P在二次函數(shù)y=x2-2x-5的圖象上,當-2<x≤a時,其親密點Q的縱坐標y′滿足-5≤y′≤5,請直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,點D,E分別是AB,AC的中點,點G,F在BC邊上(均不與端點重合),DG∥EF.將△BDG繞點D順時針旋轉(zhuǎn)180°,將△CEF繞點E逆時針旋轉(zhuǎn)180°,拼成四邊形MGFN,則四邊形MGFN周長l的取值范圍是___________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com