【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0)和B(3,0)兩點,交y軸于點E.
(1)求此拋物線的解析式.
(2)若直線y=x+1與拋物線交于A、D兩點,與y軸交于點F,連接DE,求△DEF的面積.
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx(a,b為常數)的圖象如圖所示,設關于x的一元二次方程ax2+bx+m=1的兩個實數根分別為x1,x2,若x1x2>0,則實數m的取值范圍是( 。
A.0≤m<3B.0<m≤3C.1≤m<4D.1<m≤4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們在探究一元二次方程根與系數的關系中發(fā)現(xiàn):如果關于x的方程x2+px+q=0的兩個根是x1,x2,那么由求根公式可推出x1+x2=﹣p,x1x2=q,請根據這一結論,解決下列問題:
(1)若α,p是方程x2﹣3x+1=0的兩根,則α+β= ,αβ= ;若2,3是方程x2+mx+n=0的兩根,則m= ,n= ;
(2)已知a,b滿足a2﹣5a+3=0,b2﹣5b+3=0,求的值;
(3)已知a,b,c滿足a+b+c=0,abc=5,求正整數c的最小值,
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有這樣一個問題:探究函數y=的圖象與性質.小美根據學習函數的經驗,對函數y=的圖象與性質進行了探究下面是小美的探究過程,請補充完整:
(1)函數y=的自變量x的取值范圍是 ;
(2)下表是y與x的幾組對應值.
x | -2 | - | -1 | - | 1 | 2 | 3 | 4 | … | ||
y | 0 | - | -1 | - | m | … |
求m的值;
(3)如圖,在平面直角坐標系xOy中,描出了以上表中各對對應值為坐標的點.根據描出的點,畫出該函數的圖象;
(4)結合函數的圖象,寫出該函數的一條性質: .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在解方程(x2﹣2x)2﹣2(x2﹣2x)-3=0時,設x2﹣2x=y,則原方程可轉化為y2﹣2y-3=0,解得y1=-1,y2=3,所以x2﹣2x=-1或x2﹣2x=3,可得x1=x2=1,x3=3,x4=-1.我們把這種解方程的方法叫做換元法.對于方程:x2+﹣3x﹣=12,我們也可以類似用換元法設x+ =y,將原方程轉化為一元二次方程,再進一步解得結果,那么換元得到的一元二次方程式是( )
A.y2﹣3y﹣12=0B.y2+y﹣8=0
C.y2﹣3y﹣14=0D.y2﹣3y﹣10=0
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在中,,為高,
(1)如圖1,當時,求的值;
(2)如圖2,點是的中點,過點作交于,求的值;(用含的代數式表示)
(3)在(2)的條件下,若,則 .(直接寫出結果)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】國貿商店服裝柜在銷售中發(fā)現(xiàn):“寶樂牌”童裝平均每天可以售出20件,每件盈利40元.為了迎接“六一”兒童節(jié),商場決定采取適當的降價措施,擴大銷售量,增加盈利,盡快減少庫存.經調查發(fā)現(xiàn):每件童裝每降價1元,商場平均每天可多銷售2件.
(1)若每件童裝降價5元,則商場盈利多少元?
(2)若商場每天要想盈利1200元,請你幫助商場算一算,每件童裝應降價多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在正方形ABCD中,點H,E,F分別在邊AB,BC,CD上,AE⊥HF于點G.
(1)如圖1,求證:AE=HF;
(2)如圖2,延長FH,交CB的延長線于M,連接AC,交HF于N.若MB=BE,EC=2BE,求的值;
(3)如圖3,若AB=2,BH=DF,將線段HF繞點F順時針旋轉90°至線段MF,連接AM,則線段AM的最小值為 .(直接寫出結果)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程x2+(2k-1)x+k2=0有兩個實根x1和x2
(1) 求實數k的取值范圍
(2) 若方程兩實根x1、x2滿足x12-x22=0,求k的值
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com