【題目】如圖,在等邊ABC中,DBC邊上一點(diǎn),EAC邊上一點(diǎn),且∠ADB+∠EDC120°

1)求證:ABD∽△DCE

2)若BD4,CE3,求ABC的面積.

【答案】(1)證明見(jiàn)解析;(2)

【解析】

1)根據(jù)等邊三角形性質(zhì)求出∠B=C=60°,由∠ADB+∠EDC120°,根據(jù)等式性質(zhì)求出∠BAD=CDE,即可證明ABD∽△DCE;

2)由(1)知道ABD∽△DCE,對(duì)應(yīng)邊成比例得出,列方程解答即可.

(1)證明:∵△ABC是等邊三角形,

∴∠B=C=60°,AB=AC,

∴∠BAD+ADB=120°

又∵∠ADB+EDC=120°,

∴∠BAD=EDC

∴△ABD∽△DCE.

2)由(1ABD∽△DCE可得:,

,

4(AB-4)=3AB,

AB=16.

過(guò)點(diǎn)AAFBCF,則BF=BC=8,

RtABF中,AF==,

∴△ABC的面積為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】RtABC中,已知C90°,B50°,點(diǎn)D在邊BC上,BD2CD(圖4).把ABC繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)m0m180)度后,如果點(diǎn)B恰好落在初始RtABC的邊上,那么m_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,利用一面長(zhǎng)為34米的墻,用鐵柵欄圍成一個(gè)矩形自行車(chē)場(chǎng)地ABCD,在ABBC邊各有一個(gè)2米寬的小門(mén)(不用鐵柵欄).設(shè)矩形ABCD的邊AD長(zhǎng)為x米,AB長(zhǎng)為y米,矩形的面積為S平方米,且xy

1)若所用鐵柵欄的長(zhǎng)為40米,求yx的函數(shù)關(guān)系式,并直接寫(xiě)出自變量x的取值范圍;

2)在(1)的條件下,求Sx的函數(shù)關(guān)系式,并求出怎樣圍才能使矩形場(chǎng)地的面積為192平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC的頂點(diǎn)坐標(biāo)分別為O(0,0)A(12,0),B(8,6),C(0,6).動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿邊向OA終點(diǎn)A運(yùn)動(dòng);動(dòng)點(diǎn)Q從點(diǎn)B同時(shí)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿邊BC向終點(diǎn)C運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒,PQ=y

1)直接寫(xiě)出y關(guān)于t的函數(shù)解析式及t的取值范圍:   ;

2)當(dāng)PQ=3時(shí),求t的值;

3)連接OBPQ于點(diǎn)D,若雙曲線(xiàn)經(jīng)過(guò)點(diǎn)D,問(wèn)k的值是否變化?若不變化,請(qǐng)求出k的值;若變化,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC,B=90°,AB=5 cm,BC=7 cm,點(diǎn)P從點(diǎn)A開(kāi)始沿AB邊向點(diǎn)B1 cm/s的速度移動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B開(kāi)始沿BC向點(diǎn)C2cm/s的速度移動(dòng).當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)另一點(diǎn)也隨之停止運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為x(x>0).

(1)求幾秒后,PQ的長(zhǎng)度等于5 cm.

(2)運(yùn)動(dòng)過(guò)程中,△PQB的面積能否等于8 cm2?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】周末小明勻速步行趕往學(xué)校參加學(xué)校組織的植樹(shù)活動(dòng),小明從家出發(fā)30分鐘后,忽然想起沒(méi)有帶植樹(shù)工具,于是馬上掉頭往回走行走速度比之前提高了1千米/時(shí)(仍保持勻速步行),同時(shí)小明打電話(huà)給爸爸,請(qǐng)爸爸幫他把植樹(shù)工具送過(guò)來(lái),從小明開(kāi)始打電話(huà)到爸爸出門(mén)一共用了4分鐘,爸爸的行走速度與此時(shí)小明的行走速度相同,兩人相遇后,小明立即趕往學(xué)校,爸爸則轉(zhuǎn)身回家,兩人速度均保持不變,爸爸在回家途中用了10分鐘吃早餐,然后立即回家,當(dāng)爸爸到家時(shí)小明剛好到達(dá)學(xué)校.爸爸和小明相距的路程y(千米)與小明從家出發(fā)的時(shí)間x(分鐘)之間的關(guān)系如圖所示,求今天早上小明從家到學(xué)校途中行走的總路程是________千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi),拋物線(xiàn)x軸交于點(diǎn)A,C(點(diǎn)A在點(diǎn)C的左側(cè)),與y軸交于點(diǎn)B,頂點(diǎn)為D.點(diǎn)Q為線(xiàn)段BC的三等分點(diǎn)(靠近點(diǎn)C.

1)點(diǎn)M為拋物線(xiàn)對(duì)稱(chēng)軸上一點(diǎn),點(diǎn)E為對(duì)稱(chēng)軸右側(cè)拋物線(xiàn)上的點(diǎn)且位于第一象限,當(dāng)的周長(zhǎng)最小時(shí),求面積的最大值;

2)在(1)的條件下,當(dāng)的面積最大時(shí),過(guò)點(diǎn)E軸,垂足為N,將線(xiàn)段CN繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到點(diǎn)N,再將點(diǎn)N向上平移個(gè)單位長(zhǎng)度.得到點(diǎn)P,點(diǎn)G在拋物線(xiàn)的對(duì)稱(chēng)軸上,請(qǐng)問(wèn)在平面直角坐標(biāo)系內(nèi)是否存在一點(diǎn)H,使點(diǎn)D,P,GH構(gòu)成菱形.若存在,請(qǐng)直接寫(xiě)出點(diǎn)H的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線(xiàn)y=﹣x+3與兩坐標(biāo)軸圍成一個(gè)AOB.現(xiàn)將背面完全相同,正面分別標(biāo)有數(shù)1、23、、5張卡片洗勻后,背面朝上,從中任取一張,將該卡片上的數(shù)作為點(diǎn)P的橫坐標(biāo),再在剩下的4張卡片中任取一張,將該卡片上的數(shù)作為點(diǎn)P的縱坐標(biāo).

1)請(qǐng)用樹(shù)狀圖或列表求出點(diǎn)P的坐標(biāo).

2)求點(diǎn)P落在AOB內(nèi)部的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系中,正比例函數(shù)y=的圖象經(jīng)過(guò)A,點(diǎn)A的縱坐標(biāo)為4,反比例函數(shù)y=的圖象也經(jīng)過(guò)點(diǎn)A,在第一象限內(nèi)的點(diǎn)B在這個(gè)反比例函數(shù)圖象上,過(guò)點(diǎn)BBCx軸,交y軸于點(diǎn)C,且AC=AB,求:

(1)這個(gè)反比例函數(shù)的解析式;

(2)ΔABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案