【題目】已知一副三角板ABE與ACD.
(1)將兩個(gè)三角板如圖(1)放置,連結(jié)BD,計(jì)算∠1+∠2= .
(2)將圖(1)中的三角板BAE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一個(gè)銳角α.
①當(dāng)α= 時(shí),AB∥CD,如圖(2)并計(jì)算α+∠1+∠2= .
②當(dāng)α= 45°時(shí),如圖(3),計(jì)算α+∠1+∠2= .
③在旋轉(zhuǎn)的過(guò)程中,當(dāng)B點(diǎn)在直線CD的上方時(shí),如圖(4), α、∠1、∠2間的數(shù)量關(guān)系是否會(huì)發(fā)生變化,為什么?
④當(dāng)B點(diǎn)運(yùn)動(dòng)到直線CD的下方時(shí),如圖(5),α(∠CAE)、∠1、∠2間的數(shù)量關(guān)系是否會(huì)發(fā)生變化,試說(shuō)明你的結(jié)論?
【答案】 (1)105°;(2)見(jiàn)解析.
【解析】(1)直角三角板一般有兩種 ,一種是30°,60°,90° ,另一種是45°,45°,90°.
∴∠BCD=45°+30°=75°
∴∠1+∠2=180°-75°=105°
(2)①連接CE,
若AB∥DC,則∠1+∠2=∠ABE=90°,∴∠BOD=90°
∴∠OCE+∠CEO=180°-∠COE=90°
∴∠ACE+∠AEC=30°+45°+90°=165°
在三角形ACE中,α=180°-165°=15°, α+∠1+∠2=105°
②連接CE
∠EAD+∠ADC=45°+60°=105°, ∴∠DCE+∠AEC=105°
∴∠DCE+∠CEB=105°-45°=60°
∴∠CFE=180°-60°=120°
∴ α+∠1+∠2=180°-120°+45°=105°
③設(shè)AC與BE交于點(diǎn)N,BE與CD交于點(diǎn)F
(∠1+∠2)+(∠α+∠C)+∠E=180°,
∠1+∠2+∠α+30°+45°=180°,
∴α+∠1+∠2=105°;
④變化,同上,設(shè)AB與DC相交于點(diǎn)F
∠1+(∠α+∠C-∠2)+∠E=180°,
∠1+∠α+30°-∠2+45°=180°,
∴∠α+∠1-∠2=105°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的一元二次方程kx2-2x-1=0有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,MA1∥NA2 , 則∠A1+∠A2= 度.
如圖2,MA1∥NA3 , 則∠A1+∠A2+∠A3= 度.
如圖3,MA1∥NA4 , 則∠A1+∠A2+∠A3+∠A4= 度.
如圖4,MA1∥NA5 , 則∠A1+∠A2+∠A3+∠A4+∠A5= 度.從上述結(jié)論中你發(fā)現(xiàn)了什么規(guī)律?
如圖5,MA1∥NAn , 則∠A1+∠A2+∠A3+…+∠An= 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列作圖語(yǔ)句正確的是( 。
A. 作射線AB,使AB=a B. 作∠AOB=∠a
C. 延長(zhǎng)直線AB到點(diǎn)C,使AC=BC D. 以點(diǎn)O為圓心作弧
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)A(﹣1,0),B(3,0),C(0,﹣3)三點(diǎn),求這個(gè)二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)是嚴(yán)重缺水的國(guó)家之一,人均淡水資源為世界人均量的四分之一,所以我們要為中國(guó)節(jié)水,為世界節(jié)水.若每人每天浪費(fèi)水0.32升,那么100萬(wàn)人每天浪費(fèi)的水,用科學(xué)記數(shù)法表示為__________升.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:拋物線y=x2+(2m﹣1)x+m2﹣1經(jīng)過(guò)坐標(biāo)原點(diǎn),且當(dāng)x<0時(shí),y隨x的增大而減。
(1)求拋物線的解析式,并寫(xiě)出y<0時(shí),對(duì)應(yīng)x的取值范圍;
(2)設(shè)點(diǎn)A是該拋物線上位于x軸下方的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)A作x軸的平行線交拋物線于另一點(diǎn)D,再作AB⊥x軸于點(diǎn)B,DC⊥x軸于點(diǎn)C.
①當(dāng)BC=1時(shí),直接寫(xiě)出矩形ABCD的周長(zhǎng);
②設(shè)動(dòng)點(diǎn)A的坐標(biāo)為(a,b),將矩形ABCD的周長(zhǎng)L表示為a的函數(shù)并寫(xiě)出自變量的取值范圍,判斷周長(zhǎng)是否存在最大值?如果存在,求出這個(gè)最大值,并求出此時(shí)點(diǎn)A的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】父親節(jié)快到了,明明準(zhǔn)備為爸爸煮四個(gè)大湯圓作早點(diǎn):一個(gè)芝麻餡,一個(gè)水果餡,兩個(gè)花生餡,四個(gè)湯圓除內(nèi)部餡料不同外,其它一切均相同.
(1)求爸爸吃前兩個(gè)湯圓剛好都是花生餡的概率;
(2)若給爸爸再增加一個(gè)花生餡的湯圓,則爸爸吃前兩個(gè)湯圓都是花生餡的可能性是否會(huì)增大?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一組數(shù)據(jù):1,2,4,3,2,4,2,5,6,1,它們的平均數(shù)為_______,眾數(shù)為_______,中位數(shù)為_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com