【題目】如圖1,在正方形ABCD中,P是對(duì)角線(xiàn)BD上的一點(diǎn),點(diǎn)E在A(yíng)D的延長(zhǎng)線(xiàn)上,且PA=PE,PE交CD于F.
(1)證明:PC=PE;
(2)求∠CPE的度數(shù);
(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當(dāng)∠ABC=120°時(shí),連接CE,試探究線(xiàn)段AP與線(xiàn)段CE的數(shù)量關(guān)系,并說(shuō)明理由.

【答案】
(1)證明:在正方形ABCD中,AB=BC,

∠ABP=∠CBP=45°,

在△ABP和△CBP中,

∴△ABP≌△CBP(SAS),

∴PA=PC,

∵PA=PE,

∴PC=PE;


(2)由(1)知,△ABP≌△CBP,

∴∠BAP=∠BCP,

∴∠DAP=∠DCP,

∵PA=PE,

∴∠DAP=∠E,

∴∠DCP=∠E,

∵∠CFP=∠EFD(對(duì)頂角相等),

∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,

即∠CPF=∠EDF=90°;


(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,

在△ABP和△CBP中,

,

∴△ABP≌△CBP(SAS),

∴PA=PC,∠BAP=∠BCP,

∵PA=PE,

∴PC=PE,

∴∠DAP=∠DCP,

∵PA=PC,

∴∠DAP=∠AEP,

∴∠DCP=∠AEP

∵∠CFP=∠EFD(對(duì)頂角相等),

∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,

即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,

∴△EPC是等邊三角形,

∴PC=CE,

∴AP=CE.


【解析】(1)先證出△ABP≌△CBP,得PA=PC,由于PA=PE,得PC=PE;(2)由△ABP≌△CBP,得∠BAP=∠BCP,進(jìn)而得∠DAP=∠DCP,由PA=PC,得到∠DAP=∠E,∠DCP=∠E,最后∠CPF=∠EDF=90°得到結(jié)論;(3)借助(1)和(2)的證明方法容易證明結(jié)論.
【考點(diǎn)精析】掌握菱形的性質(zhì)和正方形的性質(zhì)是解答本題的根本,需要知道菱形的四條邊都相等;菱形的對(duì)角線(xiàn)互相垂直,并且每一條對(duì)角線(xiàn)平分一組對(duì)角;菱形被兩條對(duì)角線(xiàn)分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線(xiàn)長(zhǎng)的積的一半;正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線(xiàn)相等,并且互相垂直平分,每條對(duì)角線(xiàn)平分一組對(duì)角;正方形的一條對(duì)角線(xiàn)把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線(xiàn)與邊的夾角是45o;正方形的兩條對(duì)角線(xiàn)把這個(gè)正方形分成四個(gè)全等的等腰直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)解方程4x2(x+1)2=0;

(2)請(qǐng)運(yùn)用解一元二次方程的思想方法解方程x3x=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:
(1)計(jì)算:(﹣2016)0+( ﹣2+(﹣3)3
(2)簡(jiǎn)算:982 -97×99.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠(chǎng)承接了一批紙箱加工任務(wù),用如圖1所示的長(zhǎng)方形和正方形紙板(長(zhǎng)方形的寬與正方形的邊長(zhǎng)相等)加工成如圖所示的豎式與橫式兩種無(wú)蓋的長(zhǎng)方形紙箱.(加工時(shí)接縫材料不計(jì))

(1)若該廠(chǎng)購(gòu)進(jìn)正方形紙板1000張,長(zhǎng)方形紙板2000張.問(wèn)豎式紙盒,橫式紙盒各加工多少個(gè),恰好能將購(gòu)進(jìn)的紙板全部用完;
(2)該工廠(chǎng)某一天使用的材料清單上顯示,這天一共使用正方形紙板50張,長(zhǎng)方形紙板a張,全部加工成上述兩種紙盒,且120<a<136,試求在這一天加工兩種紙盒時(shí),a的所有可能值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將ABCD沿過(guò)點(diǎn)A的直線(xiàn)l折疊,使點(diǎn)D落到AB邊上的點(diǎn)D′處,折痕l交CD邊于點(diǎn)E,連接BE.
(1)求證:四邊形BCED′是平行四邊形;
(2)若BE平分∠ABC,求證:AB2=AE2+BE2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某天的溫度上升3℃記為+3℃,那么下降5℃應(yīng)記為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知線(xiàn)段AB的兩個(gè)端點(diǎn)分別是A(1,2),B(2,0),將線(xiàn)段AB平移后得到線(xiàn)段CD,若點(diǎn)A的對(duì)應(yīng)點(diǎn)是點(diǎn)C(3,a),點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)D(b,1),則a﹣b的值是( )
A.﹣1
B.0
C.1
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊三角形ABC的邊長(zhǎng)為6,在AC,BC邊上各取一點(diǎn)E,F(xiàn),連接AF,BE相交于點(diǎn)P,且AE=CF.

(1)求證:AF=BE,并求∠FPB的度數(shù);

(2)AE=2,試求AP·AF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+mx+n=0的兩個(gè)實(shí)數(shù)根分別為x1=-2x2=4,則m+n=______

查看答案和解析>>

同步練習(xí)冊(cè)答案