【題目】為響應(yīng)“書香學(xué)校,書香班級(jí)”的建設(shè)號(hào)召,平頂山市某中學(xué)積極行動(dòng),學(xué)校圖書角的新書、好書不斷增加.下面是隨機(jī)抽查該校若干名同學(xué)捐書情況統(tǒng)計(jì)圖:
請(qǐng)根據(jù)下列統(tǒng)計(jì)圖中的信息,解答下列問題:
(1)此次隨機(jī)調(diào)查同學(xué)所捐圖書數(shù)的中位數(shù)是 ,眾數(shù)是 ;
(2)在扇形統(tǒng)計(jì)圖中,捐2本書的人數(shù)所占的扇形圓心角是多少度?
(3)若該校有在校生1600名學(xué)生,估計(jì)該校捐4本書的學(xué)生約有多少名?
【答案】(1)4本;2本;(2)108°;(3)該校捐4本書的學(xué)生約有416名.
【解析】
(1)根據(jù)捐2本的學(xué)生數(shù)所占的百分比和人數(shù)可以求得本次調(diào)查的學(xué)生數(shù),從而可以得到中位數(shù)和眾數(shù);
(2)根據(jù)扇形統(tǒng)計(jì)圖中的數(shù)據(jù),利用“扇形圓心角度數(shù)=360°×所占百比例”即可得出結(jié)果;
(3)根據(jù)樣本估計(jì)總體的方法,利用學(xué)生總?cè)藬?shù)×捐4本書的學(xué)生人數(shù)所占的百分比可得出結(jié)果.
解:(1)本次調(diào)查的人數(shù)為:15÷30%=50(人),
捐書4本的學(xué)生人數(shù)為:50﹣9﹣15﹣7﹣6=13(人),
將所捐圖書數(shù)按照從小到大的順序排列,則處在第25,26位的捐書數(shù)都為4本,
∴此次隨機(jī)調(diào)查同學(xué)所捐圖書數(shù)的中位數(shù)是4本;
根據(jù)統(tǒng)計(jì)圖可知捐2本書的人數(shù)最多,∴眾數(shù)是2本,
故答案為:4本;2本;
(2)根據(jù)題意得,360°×30%=108°,
答:捐2本書的人數(shù)所占的扇形圓心角是108°;
(3)根據(jù)題意得,1600×=416(名),
答:該校捐4本書的學(xué)生約有416名.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AB=9,cosA=,如果將△ABC繞著點(diǎn)C旋轉(zhuǎn)至△A′B′C′的位置,使點(diǎn)B′落在∠ACB的角平分線上,A′B′與AC相交于點(diǎn)D,那么線段CD的長(zhǎng)等于______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=12,BC=24,動(dòng)點(diǎn)P從點(diǎn)A開始沿邊AB向終點(diǎn)B以每秒2個(gè)單位長(zhǎng)度的速度移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B開始沿邊BC以每秒4個(gè)單位長(zhǎng)度的速度向終點(diǎn)C移動(dòng),如果點(diǎn)P、Q分別從點(diǎn)A、B同時(shí)出發(fā),那么△PBQ的面積S隨出發(fā)時(shí)間t(s)如何變化?寫出函數(shù)關(guān)系式及t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,為邊上的中線,點(diǎn)在上,以點(diǎn)為圓心,長(zhǎng)為半徑畫弧,交的延長(zhǎng)線于點(diǎn),點(diǎn)在上,且,連接.
(1)依題意補(bǔ)全圖形;
(2)求證:;
(3)若平分,則與滿足的等量關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.
(1)判斷∠D是否是直角,并說明理由.
(2)求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD.
(1)發(fā)現(xiàn)問題:若∠ABF=∠ABE,∠CDF=∠CDE,則∠F與∠E的等量關(guān)系為 .
(2)探究問題:若∠ABF=∠ABE,∠CDF=∠CDE.猜想:∠F與∠E的等量關(guān)系,并證明你的結(jié)論.
(3)歸納問題:若∠ABF=∠ABE,∠CDF=∠CDE.直接寫出∠F與∠E的等量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在中,為的中點(diǎn).
(1)如果點(diǎn)在線段上以的速度由點(diǎn)向點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)在線段上由點(diǎn)向點(diǎn)運(yùn)動(dòng).
①若點(diǎn)的運(yùn)動(dòng)速度與點(diǎn)的運(yùn)動(dòng)速度相等,后,與是否全等?請(qǐng)說明理由
②若點(diǎn)的運(yùn)動(dòng)速度與點(diǎn)的運(yùn)動(dòng)速度不相等,則點(diǎn)的運(yùn)動(dòng)速度為多少時(shí),能夠使與全等?
(2)若點(diǎn)以第題②中的運(yùn)動(dòng)速度從點(diǎn)出發(fā),點(diǎn)以原來的運(yùn)動(dòng)速度從點(diǎn)同時(shí)出發(fā),都逆時(shí)針沿三邊運(yùn)動(dòng),經(jīng)過多少時(shí)間,點(diǎn)與點(diǎn)第一次在的哪條邊上相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】己知關(guān)于x的一元二次方程x2+(2k+3)x+k2=0有兩個(gè)不相等的實(shí)數(shù)根x1,x2.
(1)求k的取值范圍;
(2)若=﹣1,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)C的坐標(biāo)為(6,0).拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A、C,與AB交于點(diǎn)D.
(1)求拋物線的函數(shù)解析式;
(2)點(diǎn)P為線段BC上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線段AC上一個(gè)動(dòng)點(diǎn),AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S.
①求S關(guān)于m的函數(shù)表達(dá)式;
②當(dāng)S最大時(shí),在拋物線y=﹣x2+bx+c的對(duì)稱軸l上,若存在點(diǎn)F,使△DFQ為直角三角形,請(qǐng)直接寫出所有符合條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com