如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)D為拋物線的頂點(diǎn),點(diǎn)E在拋物線上,點(diǎn)F在x軸上,四邊形OCEF為矩形,且OF=2,EF=3,
(1)求拋物線所對應(yīng)的函數(shù)解析式;
(2)求△ABD的面積;
(3)將△AOC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,點(diǎn)A對應(yīng)點(diǎn)為點(diǎn)G,問點(diǎn)G是否在該拋物線上?請說明理由.
(1)y=-x2+2x+3;(2)8;(3)點(diǎn)G不在該拋物線上.

試題分析:(1)在矩形OCEF中,已知OF、EF的長,先表示出C、E的坐標(biāo),然后利用待定系數(shù)法確定該函數(shù)的解析式.
(2)根據(jù)(1)的函數(shù)解析式求出A、B、D三點(diǎn)的坐標(biāo),以AB為底、D點(diǎn)縱坐標(biāo)的絕對值為高,可求出△ABD的面積.
(3)首先根據(jù)旋轉(zhuǎn)條件求出G點(diǎn)的坐標(biāo),然后將點(diǎn)G的坐標(biāo)代入拋物線的解析式中直接進(jìn)行判定即可.
(1)∵四邊形OCEF為矩形,OF=2,EF=3,
∴點(diǎn)C的坐標(biāo)為(0,3),點(diǎn)E的坐標(biāo)為(2,3).
把x=0,y=3;x=2,y=3分別代入y=-x2+bx+c中,
,
解得,
∴拋物線所對應(yīng)的函數(shù)解析式為y=-x2+2x+3;
(2)∵y=-x2+2x+3=-(x-1)2+4,
∴拋物線的頂點(diǎn)坐標(biāo)為D(1,4),
∴△ABD中AB邊的高為4,
令y=0,得-x2+2x+3=0,
解得x1=-1,x2=3,
所以AB=3-(-1)=4,
∴△ABD的面積=×4×4=8;
(3)△AOC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,CO落在CE所在的直線上,由(2)可知OA=1,
∴點(diǎn)A對應(yīng)點(diǎn)G的坐標(biāo)為(3,2),
當(dāng)x=3時(shí),y=-32+2×3+3=0≠2,所以點(diǎn)G不在該拋物線上.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線AB:與拋物線交于A、B兩點(diǎn),
(1)直線AB總經(jīng)過一個(gè)定點(diǎn)C,請直接寫出點(diǎn)C坐標(biāo);
(2)當(dāng)時(shí),在直線AB下方的拋物線上求點(diǎn)P,使△ABP的面積等于5;
(3)若在拋物線上存在定點(diǎn)D使∠ADB=90°,求點(diǎn)D到直線AB的最大距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知一個(gè)二次函數(shù)的關(guān)系式為 y=x2-2bx+c.
(1)若該二次函數(shù)的圖象與x軸只有一個(gè)交點(diǎn),
①則b、c 應(yīng)滿足關(guān)系為                ;
②若該二次函數(shù)的圖象經(jīng)過A(m,n)、B(m +6,n)兩點(diǎn),求n的值;
(2)若該二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn)C(6,0)、D(k,0),線段CD(含端點(diǎn))上有若干個(gè)橫坐標(biāo)為整數(shù)的點(diǎn),且這些點(diǎn)的橫坐標(biāo)之和為21,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線經(jīng)過A(,0),C(2,-3)兩點(diǎn),與y軸交于點(diǎn)D,與x軸交于另一點(diǎn)B.
(1)求此拋物線的解析式及頂點(diǎn)坐標(biāo);
(2)若將此拋物線平移,使其頂點(diǎn)為點(diǎn)D,需如何平移?寫出平移后拋物線的解析式;
(3)過點(diǎn)P(m,0)作x軸的垂線(1≤m≤2),分別交平移前后的拋物線于點(diǎn)E,F(xiàn),交直線OC于點(diǎn)G,求證:PF=EG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,已知A(3,0)、B(4,4)、原點(diǎn)O(0,0)在拋物線y=ax2+bx+c (a≠0)上.

(1)求拋物線的解析式.
(2)將直線OB向下平移m個(gè)單位長度后,得到的直線與拋物線只有一個(gè)交點(diǎn)D,求m的值及點(diǎn)D的坐標(biāo).
(3)如圖2,若點(diǎn)N在拋物線上,且∠NBO=∠ABO,則在(2)的條件下,求出所有滿足△POD∽△NOB的點(diǎn)P的坐標(biāo)(點(diǎn)P、O、D分別與點(diǎn)N、O、B對應(yīng))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,∠C=90°,BC=5米,AC=12米.M點(diǎn)在線段CA上,從C向A運(yùn)動(dòng),速度為1米/秒;同時(shí)N點(diǎn)在線段AB上,從A向B運(yùn)動(dòng),速度為2米/秒.運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t為何值時(shí),∠AMN=∠ANM?
(2)當(dāng)t為何值時(shí),△AMN的面積最大?并求出這個(gè)最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且對稱軸為x=1,點(diǎn)A坐標(biāo)為(-1,0).則下面的四個(gè)結(jié)論:
①2a+b=0;②4a+2b+c>0;③B點(diǎn)坐標(biāo)為(4,0);④當(dāng)x<-1時(shí),y>0.
其中正確的是( 。
A.①②      B.③④      C.①④      D.②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

方程的正數(shù)根的個(gè)數(shù)為(  )
A.1個(gè)B.2個(gè)C.3D.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將拋物線-1的圖像向左平移2個(gè)單位,再向上平移1個(gè)單位,所得拋物線         .

查看答案和解析>>

同步練習(xí)冊答案