已知,如圖,拋物線y=x2+px+q與x軸相交于A、B兩點,與y軸交于點C,且OA≠OB,OA=OC,設拋物線的頂點為點P,直線PC與x軸的交點D恰好與點A關于y軸對稱.
(1)求p、q的值.
(2)在題中的拋物線上是否存在這樣的點Q,使得四邊形PAQD恰好為平行四邊形?若存在,求出點Q的坐標;若不存在,請說明理由.
(3)連接PA、AC.問:在直線PC上,是否存在這樣點E(不與點C重合),使得以P、A、E為頂點的三角形與△PAC相似?若存在,求出點E的坐標;若不存在,請說明理由.
(1)在拋物線y=x2+px+q中,
當x=0時,y=q.即:C點的坐標為(0,q).
因為:OA=OC,D點與A點關于y軸對稱.
所以:A點的坐標為(q,0);D點的坐標為(-q,0).
將A(q,0)代入y=x2+px+q中得:0=q2+pq+q
即:q(q+p+1)=0
所以:q=0,(不符合題意,舍去.)
q+p=-1 ①
現(xiàn)在求點P的坐標,即拋物線y=x2+px+q頂點的坐標:
橫坐標:-
p
2
;縱坐標:
4q-p2
4
,
設直線CD的方程為y=kx+b
因為直線CD過C(0,q)、D(-q,0)兩點,所以有方程組
q=b,0=-qk+b.
解得:k=1,b=q.
所以直線CD的解析式為:y=x+q.
因為點P在直線CD上,
所以
4q-p2
4
=-
p
2
+q
解得:p=0(不符合題意,舍去)
p=2 ②
又已經(jīng)求得的①、②兩等式得:p=2,q=-3.
因此;p、q的值分別為 2和-3.

(2)∵p=2,q=-3.
∴拋物線的解析式為y=x2+2x-3,
A、D、C、P四點的坐標分別為(-3,0)、(3,0)、(0,-3)、(-1,-4).
直線CD的方程式為y=x-3,
設:過A點與直線CD平行的直線AQ的方程為:
y=x+b(因兩直線平行,所以一次項系數(shù)相等)
因為點A(-3,0)在直線AQ上,將其代入y=x+b中得:0=-3+b,解得:b=3
所以:直線AQ的方程為:y=x+3
下面求直線AQ(y=x+3)與拋物線y=x2+2x-3的交點Q的坐標:
解方程組y=x2+2x-3,y=x+3.得x1=2,y1=5;x2=-3,y2=0.
即:兩交點為A(-3,0);Q(2,5).
下面再求A、Q兩點距離和P、D兩點距離:從圖形可知
|AQ|=5
2
,|PD|=4
2
,
所以|AQ|≠|(zhì)PD|
這說明AQ與PD不相等,所以在拋物線上不存在滿足四邊形APDQ是平行四邊形的Q點.

(3)存在E點,且E點坐標為(9,6).
具體求解過程如下:
設E點是直線PC上的點,且滿足AE垂直AP
求直線AP的方程,設直線AP的方程為y=kx+b
因為A(-3,0),P(-1,-4)兩點在直線AP上,所以有方程組
0=-3k+b,-4=-k+b.解得:k=-2,b=-6.
所以直線AP的方程式為:y=-2x-6
因為直線AE垂直直線AC,所以兩直線一次項系數(shù)之積等于-1
所以,設直線AE方程式為y=
1
2
x+b
A(-3,0)點在直線AE上,所以b=
3
2
,
所以直線AE的方程式為y=
1
2
x+
3
2
,
直線AE與直線CD相交于E點,解兩直線方程組成的方程組得:x=9,y=6.
即E點的坐標為(9,6).
在三角形ACD中,因為OA=OD=OC,AD垂直CO,
所以∠ACD是直角,
在直角三角形APE中,AC是斜邊PE上的高,
所以△APC△EPA.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

數(shù)學課上,老師提出:
如圖,在平面直角坐標系中,O為坐標原點,A點的坐標為(1,0),點B在x軸上,且在點A的右側(cè),AB=OA,過點A和B作x軸的垂線,分別交二次函數(shù)y=x2的圖象于點C和D,直線OC交BD于點M,直線CD交y軸于點H,記點C、D的橫坐標分別為xC、xD,點H的縱坐標為yH
同學發(fā)現(xiàn)兩個結(jié)論:
①S△CMD:S梯形ABMC=2:3 ②數(shù)值相等關系:xC•xD=-yH
(1)請你驗證結(jié)論①和結(jié)論②成立;
(2)請你研究:如果上述框中的條件“A的坐標(1,0)”改為“A的坐標(t,0)(t>0)”,其他條件不變,結(jié)論①是否仍成立(請說明理由);
(3)進一步研究:如果上述框中的條件“A的坐標(1,0)”改為“A的坐標(t,0)(t>0)”,又將條件“y=x2”改為“y=ax2(a>0)”,其他條件不變,那么xC、xD與yH有怎樣的數(shù)值關系?(寫出結(jié)果并說明理由)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線y=x2+bx+c的圖象與x軸的一個交點為B(5,0),另一個交點為A,且與y軸交于點C(0,5).
(1)求直線BC與拋物線的解析式;
(2)若點M是拋物線在x軸下方圖象上的一動點,過點M作MNy軸交直線BC于點N,求MN的最大值;
(3)在(2)的條件下,MN取得最大值時,若點P是拋物線在x軸下方圖象上任意一點,以BC為邊作平行四邊形CBPQ,設平行四邊形CBPQ的面積為S1,△ABN的面積為S2,且S1=6S2,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某幢建筑物,從10米高的窗口A用水管和向外噴水,噴的水流呈拋物線,拋物線所在平面與墻面垂直(如圖),如果拋物線的最高點M離墻1米,離地面
40
3
米,求水流下落點B離墻距離OB.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在矩形ABCD中,AB=4,BC=2,以A為坐標原點,AB所在的直線為x軸,建立直角坐標系.然后將矩形ABCD繞點A逆時針旋轉(zhuǎn),使點B落在y軸的E點上,則C和D點依次落在第二象限的F點上和x軸的G點上(如圖).
(1)求經(jīng)過B,E,G三點的二次函數(shù)解析式;
(2)設直線EF與(1)的二次函數(shù)圖象相交于另一點H,試求四邊形EGBH的周長.
(3)設P為(1)的二次函數(shù)圖象上的一點,BPEG,求P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

有一個運算裝置,當輸入值為x時,其輸出值為y,且y是x的二次函數(shù),已知輸入值為-2,0,1時,相應的輸出值分別為5,-3,-4.
(1)求此二次函數(shù)的解析式;
(2)在所給的坐標系中畫出這個二次函數(shù)的圖象,并根據(jù)圖象寫出當輸出值y為正數(shù)時輸入值x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,直線l經(jīng)過點M(3,0),且平行于y軸,與拋物線y=ax2交于點N,若S△OMN=9,則a的值是(  )
A.
2
3
B.-
2
3
C.
1
3
D.-
1
3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

科學研究表明,合理安排各學科的課外學習時間,可以有效的提高學習的效率.教育專家們通過對九年級學生的課外學習時間與學習收益情況進行進一步的研究發(fā)現(xiàn),九年級學生每天課外用于非數(shù)學學科的學習時間t(小時)與學習收益量y1的函數(shù)關系是圖①中的一條折線;每天用于數(shù)學學科的學習時間t(小時)與學習收益量y2的函數(shù)關系如圖②所示:圖象中OA是頂點為A的拋物線的一部分,AB是射線.

(1)求出y1與時間t(小時)之間的函數(shù)關系式,并注明自變量t的取值范圍;
(2)求出y2與時間t(小時)之間的函數(shù)關系式,并注明自變量t的取值范圍;
(3)如果九年級學生每天課外學習的時間為2小時,學習的總收益量為W(W=y1+y2),請問應如何安排學習時間才能使學習的總收益量最大?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

某拋物線型拱橋的示意圖如圖,已知該拋物線的函數(shù)表達式為y=-
1
48
x2+12
,為保護該橋的安全,在該拋物線上的點E、F處要安裝兩盞警示燈(點E、F關于y軸對稱),這兩盞燈的水平距離EF是24米,則警示燈F距水面AB的高度是______米.

查看答案和解析>>

同步練習冊答案