【題目】如圖,△ABC中,AB=AC,
(1)請你利用直尺和圓規(guī)完成如下操作:
①作△ABC的角平分線AD;
②作邊AB的垂直平分線EF,EF與AD相交于點(diǎn)P;
③連接PB,PC.
請你觀察圖形解答下列問題:
(2)線段PA,PB,PC之間的數(shù)量關(guān)系是 ;請說明理由.
(3)若∠ABC=70°,求∠BPC的度數(shù).
【答案】(1)見解析;(2)PA=PB=PC,理由見解析;(3)80°.
【解析】
(1)利用基本作圖作角平分線AD和AB的垂直平分線,它們相交于P點(diǎn);
(2)根據(jù)線段的垂直平分線的性質(zhì)可得:PA=PB=PC;
(3)根據(jù)等腰三角形的性質(zhì)得:∠ABC=∠ACB=70°,由三角形的內(nèi)角和得:∠BAC=180°-2×70°=40°,由角平分線定義得:∠BAD=∠CAD=20°,最后利用三角形外角的性質(zhì)可得結(jié)論.
解:(1)如圖,AD、EF 、點(diǎn)P為所作;
(2)PA=PB=PC,理由:
∵AB=AC,AD平分∠BAC,
∴AD是BC的垂直平分線,
∴PB=PC,
∵EP是AB的垂直平分線,
∴PA=PB,
∴PA=PB=PC;
故答案為:PA=PB=PC;
(3)∵AB=AC,
∴∠ABC=∠ACB=70°,
∴∠BAC=180°-2×70°=40°,
∵AM平分∠BAC,
∴∠BAD=∠CAD=20°,
∵PA=PB=PC,
∴∠ABP=∠BAP=∠ACP=20°,
∴∠BPC=∠ABP+∠BAC+∠ACP=20°+40°+20°=80°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠A=50°,BD,CE是∠ABC,∠ACB的平分線,則∠BOC的度數(shù)為( 。
A.105°B.115°C.125°D.135°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.?dāng)S一枚均勻的骰子,骰子停止轉(zhuǎn)動后,6點(diǎn)朝上是必然事件
B.甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是,,則甲的射擊成績較穩(wěn)定
C.“明天降雨的概率為”,表示明天有半天都在降雨
D.了解一批電視機(jī)的使用壽命,適合用普查的方式
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一張三角形紙片ABC,其中∠BAC=60°,BC=6,點(diǎn)D是BC邊上一動點(diǎn),將BD,CD翻折使得B′,C′分別落在AB,AC邊上,(B與B′,C與C′分別對應(yīng)),點(diǎn)D從點(diǎn)B運(yùn)動至點(diǎn)C,△B′C′D面積的大小變化情況是( 。
A. 一直減小 B. 一直不變 C. 先減小后增大 D. 先增大后減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形ABCD是平行四邊形,AE∥CF,且分別交對角線BD于點(diǎn)E,F.
(1)求證:△AEB≌△CFD;
(2)連接AF,CE,若∠AFE=∠CFE,求證:四邊形AFCE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,AB=CD.
(1)如圖(1),求證:AD∥BC;
(2)如圖(2),點(diǎn)F是AC的中點(diǎn),弦DG∥AB,交BC于點(diǎn)E,交AC于點(diǎn)M,求證:AE=2DF;
(3)在(2)的條件下,若DG平分∠ADC,GE=5,tan∠ADF=4,求⊙O的半徑。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D在雙曲線上,AD垂直x軸,垂足為A,點(diǎn)C在AD上,CB平行于x軸交雙曲線于點(diǎn)B,直線AB與y軸交于點(diǎn)F,已知AC:AD=1:3,點(diǎn)C的坐標(biāo)為(3,2).
(1)求該雙曲線的解析式;
(2)求△OFA的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l:y=﹣x+4,在直線l上取點(diǎn)B1,過B1分別向x軸,y軸作垂線,交x軸于A1,交y軸于C1,使四邊形OA1B1C1為正方形;在直線l上取點(diǎn)B2,過B2分別向x軸,A1B1作垂線,交x軸于A2,交A1B1于C2,使四邊形A1A2B2C2為正方形;按此方法在直線l上順次取點(diǎn)B3,B4,…,Bn,依次作正方形A2A3B3C3,A3A4B4C4,…,An﹣1AnBnCn,則A3的坐標(biāo)為___,B5的坐標(biāo)為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCO的對角線BO在x 軸上,若正方形ABCO的邊長為,點(diǎn)B在x負(fù)半軸上,反比例函數(shù)的圖象經(jīng)過C點(diǎn).
(1)求該反比例函數(shù)的解析式;
(2)當(dāng)函數(shù)值>-2時,請直接寫出自變量x的取值范圍;
(3)若點(diǎn)P是反比例函數(shù)上的一點(diǎn),且△PBO的面積恰好等于正方形ABCO的面積,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com