10.化簡:2(2x-y)+(2y-3x)-2(x-3y)

分析 先去括號,再合并同類項即可.

解答 解:原式=4x-2y+2y-3x-2x+6y
=-x+6y.

點評 本題考查的是整式的加減,熟知整式的加減實質(zhì)上是合并同類項是解答此題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

1.最大的負整數(shù)是-1,絕對值最小的整數(shù)是0.√. (判斷對錯)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.某商場銷售一種成本為每千克50元的水產(chǎn)品,據(jù)市場分析,若按每千克60元銷售,一個月能售出500千克,銷售單價從60元每漲1元,月銷售量就減少10千克,針對這種水產(chǎn)品的銷售情況,要使利潤最大,每千克應(yīng)漲價多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.對于平面直角坐標(biāo)系中相交的兩條直線,給出如下定義:若相交的兩條直線分別與x軸相交所構(gòu)成的兩銳角相等,則稱這兩條直線為“泛對稱直線”.例如在圖中,若∠PQR=∠PRQ,則直線PQ與直線PR稱為“泛對稱直線”;反之,若直線PQ與直線PR是“泛對稱直線”,則有∠PQR=∠PRQ.解答下列問題.
(1)判斷下列說法是否正確?若正確,則在題后的括號內(nèi)打上“√”,否則打上“×”;
①同一平面直角坐標(biāo)系中兩直線l1:y=x+3與直線l2:y=-x+3一定是“泛對稱直線”.(√)
②若同一平面直角坐標(biāo)系中兩條相交的直線y=k1x+b1(k1≠0)與y=k2x+b2(k2≠0)是“泛對稱直線”,則必有k1+k2=0,b1=b2.(×)
(2)在y軸上有一點A,且OA=2,求經(jīng)過A點且與直線l2:y=2x+4是“泛對稱直線”的直線函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

5.下列各式中,正確的是( 。
A.$\sqrt{{{(-2)}^2}}$=-2B.($\sqrt{3}$)2=9C.$\sqrt{16}$=4D.$\root{3}{{{{(-3)}^3}}}$=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.計算
(1)$\sqrt{2}(2cos45°-sin60°)+\frac{{\sqrt{24}}}{4}$
(2)cos60°+$\frac{{\sqrt{2}}}{2}$sin45°+tan30°•cos30°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.現(xiàn)定義兩種運算“⊕”“*”.對于任意兩個整數(shù),a⊕b=a+b-1,a*b=a×b-1,求:8*(-3⊕5)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

19.0乘以任何數(shù)都得0對.(判斷對錯)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

20.當(dāng)x=-2,y=2時,代數(shù)式x-y+1-2x+2y的值是(  )
A.1B.3C.5D.7

查看答案和解析>>

同步練習(xí)冊答案