精英家教網 > 初中數學 > 題目詳情

【題目】如圖,RtABC中,∠C=90°,PCB邊上一動點,連接AP,作PQAPABQ.已知AC=3cm,BC=6cm,設PC的長度為xcm,BQ的長度為ycm.

小青同學根據學習函數的經驗對函數y隨自變量x的變化而變化的規(guī)律進行了探究.

下面是小青同學的探究過程,請補充完整:

(1)按照下表中自變量x的值進行取點、畫圖、測量,分別得到了y的幾組對應值;

x/cm

0

0.5

1.0

1.5

2.0

2.5

3

3.5

4

4.5

5

6

y/cm

0

1.56

2.24

2.51

m

2.45

2.24

1.96

1.63

1.26

0.86

0

(說明:補全表格時,相關數據保留一位小數)

m的值約為多少cm;

(2)在平面直角坐標系中,描出以補全后的表格中各組數值所對應的點(x,y),畫出該函數的圖象;

(3)結合畫出的函數圖象,解決問題:

①當y>2時,寫出對應的x的取值范圍;

②若點P不與B,C兩點重合,是否存在點P,使得BQ=BP?

【答案】(1)根據題意量取數據m2.6;(2)如圖見解析;(3)0.8<x<3.5,②不存在,理由見解析.

【解析】

(1)根據題意量取數據即可得出m

(2)根據已知數據描點連線得

(3)①由圖象信息即可得出x的范圍

②根據三角形內角和判斷即可.

(1)根據題意量取數據m為2.6,

(2)根據已知數據描點連線得

(3)①由圖象可得,當0.8<x<3.5時,y>2.

②不存在,

理由如下:若BQ=BP

∴∠BPQ=BQP

∵∠BQP=APQ+PAQ>90°

∴∠BPQ+BQP+QBP>180°與三角形內角和為180°相矛盾.

∴不存在點P,使得BQ=BP.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,ADBC,AB=DCE是對角線AC上一點,且AC·CE=AD·BC.

1)求證:∠DCA=EBC;

2)延長BEADF,求證:AB2=AF·AD.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,函數yx>0)的圖象經過點A,作ACx軸于點C

(1)求k的值;

(2)直線yax+ba≠0)圖象經過點Ax軸于點B,且OB=2AC.求a的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】截長補短法,是初中幾何題中一種添加輔助線的方法,也是把幾何題化難為易的一種策略.截長就是在長邊上截取一條線段與某一短邊相等,補短就是通過延長或旋轉等方式使兩條短邊拼合到一起,從而解決問題.

(1)如圖1,△ABC是等邊三角形,點D是邊BC下方一點,∠BDC=120°,探索線段DA、DB、DC之間的數量關系.

解題思路:延長DC到點E,使CE=BD,根據∠BAC+∠BDC=180°,可證∠ABD=∠ACE,易證△ABD≌△ACE,得出△ADE是等邊三角形,所以AD=DE,從而解決問題.

根據上述解題思路,三條線段DA、DB、DC之間的等量關系是;(直接寫出結果)

(2)如圖2,Rt△ABC中,∠BAC=90°,AB=AC.點D是邊BC下方一點,∠BDC=90°,探索三條線段DA、DB、DC之間的等量關系,并證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線分別交x軸、y軸于點A(2,0)、B(0,4),點P是線段AB上一動點,過點PPCx軸于點C,交拋物線于點D

(1)

①求拋物線的解析式;

②當線段PD的長度最大時,求點P的坐標;

(2)當點P的橫坐標為1時,是否存在這樣的拋物線,使得以B、P、D為頂點的三角形與AOB相似?若存在,求出滿足條件的拋物線的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在矩形ABCD中,PCD邊上一點(DPCP),APB90°MAB上,且APMAPD,過點BBNMPDC于點N

1)求證:四邊形PMBN是菱形;

2)求證:ADBCDPPC;

3)如圖2,連接AC,分別交PM,PB于點E,F,若DP1,AD2,求的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點C是⊙O直徑AB上一點,過CCDAB交⊙O于點D,連接DA,延長BA至點P,連接DP,使∠PDAADC

(1)求證:PD是⊙O的切線;

(2)若AC=3,tanPDC,求BC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內接四邊形, ,AC為直徑, DEBC,垂足為E

1)求證:CD平分∠ACE;

2)若AC9,CE3,求CD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線l1y=﹣x與反比例函數y的圖象交于AB兩點(點A在點B左側),已知A點的縱坐標是2;

1)求反比例函數的表達式;

2)根據圖象直接寫出﹣x的解集;

3)將直線l1y=- x沿y向上平移后的直線l2與反比例函數y在第二象限內交于點C,如果△ABC的面積為30,求平移后的直線l2的函數表達式.

查看答案和解析>>

同步練習冊答案