【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,對稱軸是直線x=1.下列結(jié)論:①abc<0;②3a+c>0;③(a+c)2﹣b2<0;④a+b≤m(am+b)(m為實(shí)數(shù)).其中結(jié)論正確的有_______.(填所以正確的序號)
【答案】②③④
【解析】
①由拋物線開口方向得到a>0,對稱軸在y軸右側(cè),得到a與b異號,又拋物線與y軸負(fù)半軸相交,得到c<0,可得出abc>0,選項(xiàng)①錯(cuò)誤;
②把b=2a代入ab+c>0中得3a+c>0,所以②正確;
③由x=1時(shí)對應(yīng)的函數(shù)值y<0,可得出a+b+c<0,得到a+c<b,x=1時(shí),y>0,可得出ab+c>0,得到|a+c|<|b|
,即可得到(a+c)2b2<0,選項(xiàng)③正確;
④由對稱軸為直線x=1,即x=1時(shí),y有最小值,可得結(jié)論,即可得到④正確.
①∵拋物線開口向上,∴a>0,
∵拋物線的對稱軸在y軸右側(cè),∴b<0
∵拋物線與y軸交于負(fù)半軸,
∴c<0,
∴abc>0,①錯(cuò)誤;
②當(dāng)x=1時(shí),y>0,∴ab+c>0,
∵=1,∴b=2a,
把b=2a代入ab+c>0中得3a+c>0,所以②正確;
③當(dāng)x=1時(shí),y<0,∴a+b+c<0,
∴a+c<b,
當(dāng)x=1時(shí),y>0,∴ab+c>0,
∴a+c>b,
∴|a+c|<|b|
∴(a+c)2<b2,即(a+c)2b2<0,所以③正確;
④∵拋物線的對稱軸為直線x=1,
∴x=1時(shí),函數(shù)的最小值為a+b+c,
∴a+b+c≤am2+mb+c,
即a+b≤m(am+b),所以④正確.
故填:②③④.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(感知)如圖①,在四邊形ABCD中,點(diǎn)P在邊AB上(點(diǎn)P不與點(diǎn)A、B重合),∠A=∠B=∠DPC=90°.易證:△DAP∽△PBC(不要求證明).
(探究)如圖②,在四邊形ABCD中,點(diǎn)P在邊AB上(點(diǎn)P不與點(diǎn)A、B重合),∠A=∠B=∠DPC.
(1)求證:△DAP~△PBC.
(2)若PD=5,PC=10,BC=9,求AP的長.
(應(yīng)用)如圖③,在△ABC中,AC=BC=4,AB=6,點(diǎn)P在邊AB上(點(diǎn)P不與點(diǎn)A、B重合),連結(jié)CP,作∠CPE=∠A,PE與邊BC交于點(diǎn)E.當(dāng)CE=3EB時(shí),求AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了豐富學(xué)生校園文化生活,促進(jìn)學(xué)生學(xué)習(xí)興趣和能力的提高,我校在初一年級開始設(shè)置選修課程,共設(shè)立課程12門,下圖為其中的四門課程(包括趣味數(shù)學(xué)、籃球隊(duì)、戲劇社、合唱團(tuán))的參加人數(shù)統(tǒng)計(jì)圖:
(1)學(xué)校初一年級參加這四門課程的總?cè)藬?shù)是 人;
(2)扇形統(tǒng)計(jì)圖中“趣味數(shù)學(xué)”部分的圓心角是 度,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)學(xué)校原則上每一門課程組成一個(gè)班,但參加籃球隊(duì)的學(xué)生實(shí)在太多,考慮場地因素則分成兩個(gè)班,合唱團(tuán)由于課程特征還是組成一個(gè)班,求這四門課程平均每班多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四邊形ABCD中,AB∥CD,AD//BC,點(diǎn)E,F在對角線AC上,且AE=CF,請你分別以E,F為一端點(diǎn),和圖中已標(biāo)字母的某點(diǎn)連成兩條相等的新線段(只需證明一組線段相等即可).
(1)連接 ;
(2)結(jié)論: = ;
(3)證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,王強(qiáng)在一次高爾夫球的練習(xí)中,在某處擊球,其飛行路線滿足拋物線,其中(m)是球的飛行高度,(m)是球飛出的水平距離,結(jié)果球離球洞的水平距離還有2m.
(1)請寫出拋物線的開口方向、頂點(diǎn)坐標(biāo)、對稱軸.
(2)請求出球飛行的最大水平距離.
(3)若王強(qiáng)再一次從此處擊球,要想讓球飛行的最大高度不變且球剛好進(jìn)洞,則球飛行路線應(yīng)滿足怎樣的拋物線,求出其解析式
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已如拋物線y=ax2+bx+c與直線y=mx+n相交于兩點(diǎn),這兩點(diǎn)的坐標(biāo)分別是(0,﹣)和(m﹣b,m2﹣mb+n),其中a,b,c,m,n為實(shí)數(shù),且a,m不為0.
(1)求c的值;
(2)求證:拋物線y=ax2+bx+c與x軸有兩個(gè)交點(diǎn);
(3)當(dāng)﹣1≤x≤1時(shí),設(shè)拋物線y=ax2+bx+c與x軸距離最大的點(diǎn)為P(x0,y0),求這時(shí)|y0|的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】五水共治辦公室在一次巡查時(shí)測量一排水管的排水情況,如圖,水平放置的圓柱形排水管的截面為⊙O,半徑是10cm,有水部分弓形的高為5cm,
(1)求AB的長;
(2)求截面中有水部分弓形的面積。(保留根號及π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰直角三角形ABC,點(diǎn)P是斜邊BC上一點(diǎn)(不與B,C重合),PE是△ABP的外接圓⊙O的直徑.
(1)求證:△APE是等腰直角三角形;
(2)若⊙O的直徑為2,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c的頂點(diǎn)為D(﹣1,2),與x軸的一個(gè)交點(diǎn)A在點(diǎn)(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結(jié)論:①b2﹣4ac<0;②當(dāng)x>﹣1時(shí),y隨x增大而減;③a+b+c<0;④若方程ax2+bx+c﹣m=0沒有實(shí)數(shù)根,則m>2; ⑤3a+c<0.其中正確結(jié)論的個(gè)數(shù)是( 。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com