【題目】已知,如圖,菱形ABCD中,EF分別是CD、CB上的點(diǎn),且CECF;

(1)求證:△ABE≌△ADF

(2)若菱形ABCD中,AB4,∠C120°,∠EAF60°,求菱形ABCD的面積.

【答案】1)見(jiàn)解析;(2.

【解析】

1)根據(jù)SAS即可判斷出ABE≌△ADF

2)連接AC,則可將菱形分成兩個(gè)全等的等邊三角形,從而根據(jù)AB4可求出面積.

證明:(1)∵四邊形ABCD是菱形,

ABAD,BCCD,∠B=∠D,

CECF,

BEDF,

ABEADF中,

∴△ABE≌△ADFSAS

2)連接AC,

∵∠C120°,

∴可得ABCACD為兩個(gè)全等的等邊三角形,

又∵AB4,

S菱形ABCD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】校園安全受到全社會(huì)的廣泛關(guān)注,我市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:

(1)接受問(wèn)卷調(diào)査的學(xué)生共有   人,扇形統(tǒng)計(jì)圖中基本了解部分所對(duì)應(yīng)扇形的圓心角為   °;

(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該中學(xué)共有學(xué)生1600人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該學(xué)校學(xué)生中對(duì)校園安全知識(shí)達(dá)到了解基本了解程度的總?cè)藬?shù);

(4)若從對(duì)校園安全知識(shí)達(dá)到了解程度的3個(gè)女生和2個(gè)男生中隨機(jī)抽取2人參加校園安全知識(shí)競(jìng)賽,請(qǐng)用樹(shù)狀圖或列表法求出恰好抽到1個(gè)男生和1個(gè)女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC,BCx軸,垂足為D,邊AB所在直線分別交x軸、y軸于點(diǎn)E、F,且AFEF,反比例函數(shù)y的圖象經(jīng)過(guò)A、C兩點(diǎn),已知點(diǎn)A2,n).

1)求AB所在直線對(duì)應(yīng)的函數(shù)表達(dá)式;(2)求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,若干個(gè)全等的正五邊形排成環(huán)狀,圖中所示的是前3個(gè)正五邊形,要完成這一圓環(huán)還需正五邊形的個(gè)數(shù)為(  )

A. 10 B. 9 C. 8 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC ,∠BAC=90°,AB=AC,點(diǎn)DBC上一動(dòng)點(diǎn)連接AD,過(guò)點(diǎn)AAEAD,并且始終保持AE=AD,連接CE.

(1)求證△ABD △ACE

(2)若AF平分∠DAEBCF,探究線段BD,DF,F(xiàn)C之間的數(shù)量關(guān)系并證明;

(3)在(2)的條件下,BD=3,CF=4,AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABD是O的內(nèi)接三角形,E是弦BD的中點(diǎn),點(diǎn)C是O外一點(diǎn)且∠DBC=∠A,連接OE延長(zhǎng)與圓相交于點(diǎn)F,與BC相交于點(diǎn)C.

(1)求證:BC是O的切線;

(2)若O的半徑為6,BC=8,求弦BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從甲地到乙地有兩條公路,一條是全長(zhǎng)600km的普通公路,另一條是全長(zhǎng)480km的高速公路,某客車(chē)在高速公路上行駛的平均速度比在普通公路上快45/ ,由高速公路從甲地到乙地所需的時(shí)間是由普通公路從甲地到乙地所需時(shí)間的一半,求該客車(chē)由高速公路從甲地到乙地所需的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,鈍角ABC中,AB=AC,BC=2,O是邊AB上一點(diǎn),以O為圓心,OB為半徑作⊙O,交邊AB于點(diǎn)D,交邊BC于點(diǎn)E,過(guò)E作⊙O的切線交邊AC于點(diǎn)F.

(1)求證:EFAC.

(2)連結(jié)DF,若∠ABC=30°,且DFBC,求⊙O的半徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形中,,,點(diǎn)中點(diǎn),點(diǎn)為線段上一個(gè)動(dòng)點(diǎn),連接,將沿折疊得到,連接,當(dāng)為直角三角形時(shí),的長(zhǎng)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案