【題目】如圖,若干個全等的正五邊形排成環(huán)狀,圖中所示的是前3個正五邊形,要完成這一圓環(huán)還需正五邊形的個數(shù)為( )
A. 10 B. 9 C. 8 D. 7
【答案】D
【解析】分析:先根據(jù)多邊形的內(nèi)角和公式(n﹣2)180°求出正五邊形的每一個內(nèi)角的度數(shù),再延長五邊形的兩邊相交于一點,并根據(jù)四邊形的內(nèi)角和求出這個角的度數(shù),然后根據(jù)周角等于360°求出完成這一圓環(huán)需要的正五邊形的個數(shù),然后減去3即可得解.
詳解:∵五邊形的內(nèi)角和為(5﹣2)180°=540°,∴正五邊形的每一個內(nèi)角為540°÷5=108°,如圖,延長正五邊形的兩邊相交于點O,則∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10.∵已經(jīng)有3個五邊形,∴10﹣3=7,即完成這一圓環(huán)還需7個五邊形.
故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是邊AC、BC的中點,F是BC延長線上一點,∠F=∠B.
(l)若AB=1O,求FD的長;
(2)若AC=BC.求證:△CDE∽△DFE .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D是BC的中點,過D點的直線GF交AC于F,交AC的平行線BG于G點,DE⊥DF,交AB于點E,連結(jié)EG、EF.
(1)求證:BG=CF.
(2)請你判斷BE+CF與EF的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸交于A(x1,0)、B(x2,0)(x1<x2)兩點,與y軸交于點C,x1,x2是方程x2+4x﹣5=0的兩根.
(1)若拋物線的頂點為D,求S△ABC:S△ACD的值;
(2)若∠ADC=90°,求二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】化簡求值:當(dāng)5x2+x+2=0時,求2(3x+2y)2 -(x+2y)(2y-x) –(12x2y2-2x2y)÷xy的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售一種商品,在一段時間內(nèi),該商品的銷售量y(千克)與每千克的銷售價x(元)滿足一次函數(shù)關(guān)系(如圖所示),其中30≤x≤80.
(1)求y關(guān)于x的函數(shù)解析式;
(2)若該種商品每千克的成本為30元,當(dāng)每千克的銷售價為多少元時,獲得的利潤為600元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點D.
(1)求證:BE=CF.
(2)當(dāng)四邊形ACDE為菱形時,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了估計一個魚塘里魚的數(shù)量,第一次打撈上來20條,做上記號放入水中,第二次打撈上來25條,其中4條有記號,魚塘大約有魚__________條.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com