【題目】已知關(guān)于x的方程,下列說法正確的是( )
A. 當(dāng)k=0時,方程沒有實(shí)數(shù)根 B. 當(dāng)k=1時,方程有一個實(shí)數(shù)根
C. 當(dāng)k=-1時,方程有兩個相等的實(shí)數(shù)根 D. 當(dāng)k≠0時,方程總有兩個不相等的實(shí)數(shù)根
【答案】C
【解析】
分k=0,k≠0兩種情況探討,結(jié)合根的判別式解答即可.
A選項(xiàng):當(dāng)k=0時,方程為一元一次方程,有解,此選項(xiàng)錯誤;
B選項(xiàng):當(dāng)k=1時,方程為x2-1=0,x=±1,方程有兩個不相等的實(shí)數(shù)根,此選項(xiàng)錯誤;
C選項(xiàng):當(dāng)k=-1時,方程為-x2+2x-1=0,方程有兩個相等的實(shí)數(shù)根,此選項(xiàng)正確.
D選項(xiàng):當(dāng)k≠0時,△=(1-k)2-4×k×(-1)=(1+k)2≥0,方程有兩個實(shí)數(shù)根,此選項(xiàng)錯誤;
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知矩形OACB的邊OA,OB分別在x軸上和y軸上,線段OA=24,OB=12;點(diǎn)P從點(diǎn)O開始沿OA邊勻速移動,點(diǎn)M從點(diǎn)B開始沿BO邊勻速移動.如果點(diǎn)P,點(diǎn)M同時出發(fā),它們移動的速度相同都是1個單位/秒,設(shè)經(jīng)過x秒時(0≤x≤12),△POM的面積為y.
(1)求直線AB的解析式;
(2)求y與x的函數(shù)關(guān)系式;
(3)連接矩形的對角線AB,當(dāng)x為何值時,以M、O、P為頂點(diǎn)的三角形等于△AOB面積的;
(4)當(dāng)△POM的面積最大時,將△POM沿PM所在直線翻折后得到△PDM,試判斷D點(diǎn)是否在直線AB上,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小蟲從某點(diǎn)點(diǎn)處出發(fā)在一直線上來回爬行,假定向右爬行的路程記為正數(shù),左爬行的路程為負(fù)數(shù),爬行的路程依次為(單位:厘米):+5,-3,+10,-8,-6,+12,-11.
(1)小蟲最后是否回到出發(fā)點(diǎn)點(diǎn)?如果不在,請說出小蟲的位置;
(2)小蟲離開出發(fā)點(diǎn)點(diǎn)最遠(yuǎn)時是 厘米;
(3)在爬行過程中,如果每爬1厘米獎勵兩粒芝麻,則小蟲共得多少粒芝麻?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)閱讀下列材料:
(1)關(guān)于x的方程x2-3x+1=0(x≠0)方程兩邊同時乘以得: 即, ,
(2)a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2).
根據(jù)以上材料,解答下列問題:
(1)x2-4x+1=0(x≠0),則= ______ , = ______ , = ______ ;
(2)2x2-7x+2=0(x≠0),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,BN,DN分別平分∠ABM,∠MDC,試問∠M與∠N之間的數(shù)量關(guān)系如何?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校準(zhǔn)備購進(jìn)一批節(jié)能燈,已知1只A型節(jié)能燈和3只B型節(jié)能燈共需26元;3只A型節(jié)能燈和2只B型節(jié)能燈共需29元.
(1)求一只A型節(jié)能燈和一只B型節(jié)能燈的售價(jià)各是多少元;
(2)學(xué)校準(zhǔn)備購進(jìn)這兩種型號的節(jié)能燈共50只,并且A型節(jié)能燈的數(shù)量不多于B型節(jié)能燈數(shù)量的3倍,請?jiān)O(shè)計(jì)出最省錢的購買方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角三角形ABC中,∠ABC=90°,D為AC邊中點(diǎn),過D點(diǎn)作DE⊥DF,交AB于E,交BC于F,連接BD.
(1)求證:△CDF≌△BED
(2)若AE=4,FC=3,求AB長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程.
(1)求證:無論k為何值,方程總有實(shí)數(shù)根.
(2)設(shè)是方程的兩個根,記,S的值能為2嗎?若能,求出此時k的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD中,EF分別是AB、AD邊上的點(diǎn),DE與CF交于點(diǎn)G.
(1)如圖1,若四邊形ABCD是正方形,且DE⊥CF,求證:DE=CF;
(2)如圖2,若四邊形ABCD是矩形,且DE⊥CF,求證:;
(3)如圖3,若四邊形ABCD是平行四邊形,當(dāng)∠B=∠EGF時,第(2)問的結(jié)論是否成立?若成立給予證明;若不成立,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com