【題目】如圖是一份汽車票價(jià)表,李麗星期一、三、五要乘汽車上下班,星期二、四乘汽車上班,而搭朋友的車回家;她應(yīng)該買什么樣的票合算?如果周末她要乘汽車去公園,那么她選哪種票合算?

汽車公司票價(jià)表

單程票

周票

【答案】李麗每星期上、下班應(yīng)買單程票;若李麗周末去公園,應(yīng)買周票.

【解析】

分別計(jì)算出李麗每星期上、下班買單程票需要花費(fèi)的總額和李麗每星期上、下班買周票需要的錢數(shù),然后比較一下,哪一種便宜,就買哪一種;分別計(jì)算出李麗周末去公園買單程票需要花費(fèi)的總額和周末去公園買周票需要的錢數(shù),然后比較一下,哪一種便宜,就買哪一種.

李麗每星期上、下班買單程票需要的花費(fèi):(元)

周票需要元,

∴應(yīng)買單程票;

若李麗周末去公園,則往返需要用元,則買單程票需要的花費(fèi):(元)

周票需要元,

,

∴李麗應(yīng)買周票.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算與解方程
(1)計(jì)算:(π﹣3)0 ﹣2sin45°﹣( 1
(2)解方程:x(x﹣6)=﹣9.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,AB為⊙O的直徑,AB=4.動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以每秒π個(gè)單位的速度在⊙O上按順時(shí)針方向運(yùn)動(dòng)一周.設(shè)動(dòng)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,點(diǎn)C是圓周上一點(diǎn),且∠AOC=40°,當(dāng)t=秒時(shí),點(diǎn)P與點(diǎn)C中心對稱,且對稱中心在直徑AB上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ADBC,AE平分BAC,B=70°,C=30°.求:

1BAE的度數(shù);

2DAE的度數(shù);

3探究:小明認(rèn)為如果條件B=70°,C=30°改成B-C=40°,也能得出DAE的度數(shù)?若能,請你寫出求解過程;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:把一個(gè)半圓與拋物線的一部分組成的封閉圖形稱為“蛋圓”.
如圖,拋物線y=x2﹣2x﹣3與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)D,以AB為直徑,在x軸上方作半圓交y軸于點(diǎn)C,半圓的圓心記為M,此時(shí)這個(gè)半圓與這條拋物線x軸下方部分組成的圖形就稱為“蛋圓”.

(1)直接寫出點(diǎn)A,B,C的坐標(biāo)及“蛋圓”弦CD的長;
A , B , C , CD=
(2)如果一條直線與“蛋圓”只有一個(gè)交點(diǎn),那么這條直線叫做“蛋圓”的切線.
①求經(jīng)過點(diǎn)C的“蛋圓”切線的解析式;
②求經(jīng)過點(diǎn)D的“蛋圓”切線的解析式;
(3)由(2)求得過點(diǎn)D的“蛋圓”切線與x軸交點(diǎn)記為E,點(diǎn)F是“蛋圓”上一動(dòng)點(diǎn),試問是否存在SCDE=SCDF , 若存在請求出點(diǎn)F的坐標(biāo);若不存在,請說明理由;
(4)點(diǎn)P是“蛋圓”外一點(diǎn),且滿足∠BPC=60°,當(dāng)BP最大時(shí),請直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,2),AOB為等邊三角形,P是x軸上一個(gè)動(dòng)點(diǎn)(不與原O重合),以線段AP為一邊在其右側(cè)作等邊三角形APQ.

(1)求點(diǎn)B的坐標(biāo);

(2)在點(diǎn)P的運(yùn)動(dòng)過程中,ABQ的大小是否發(fā)生改變?如不改變,求出其大;如改變,請說明理由.

(3)連接OQ,當(dāng)OQAB時(shí),求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面一段:

計(jì)算

觀察發(fā)現(xiàn),上式從第二項(xiàng)起,每項(xiàng)都是它前面一項(xiàng)的倍,如果將上式各項(xiàng)都乘以,所得新算式中除個(gè)別項(xiàng)外,其余與原式中的項(xiàng)相同,于是兩式相減將使差易于計(jì)算.

解:設(shè),

-①得,則

上面計(jì)算用的方法稱為錯(cuò)位相減法,如果一列數(shù),從第二項(xiàng)起每一項(xiàng)與前一項(xiàng)之比都相等(本例中是都等于),那么這列數(shù)的求和問題,均可用上述錯(cuò)位相減法來解決.

下面請你觀察算式是否具備上述規(guī)律?若是,請你嘗試用錯(cuò)位相減法計(jì)算上式的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2-2(k-3)x+k2-4k-1=0.

(1)若這個(gè)方程有實(shí)數(shù)根,求k的取值范圍;

(2)若這個(gè)方程有一個(gè)根為1,求k的值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為a的正方形ABCD中,E、F是邊AD,AB上兩點(diǎn)(與端點(diǎn)不重合),且AE=BF.連接CE,DF相交于點(diǎn)M,

(1)當(dāng)E為邊AD的中點(diǎn)時(shí),則DF的長為 (用含a的式子表示)

(2)求證:∠MCB+MFB=180°.

(3)點(diǎn)M能成為DF的中點(diǎn)嗎?如果能,求出此時(shí)CM的長(用含a的式子表示);如果不能,說明理由.

查看答案和解析>>

同步練習(xí)冊答案