【題目】問題再現(xiàn):
數(shù)形結合是一種重要的數(shù)學思想方法,借助這種思想方法可將抽象的數(shù)學知識變得直觀并且具有可操作性.初中數(shù)學里的一些代數(shù)公式,很多都可以通過表示幾何圖形面積的方法進行直觀推導和解釋.
例如:利用圖形的幾何意義驗證完全平方公式.
將一個邊長為的正方形的邊長增加,形成兩個長方形和兩個正方形,如圖所示:這個圖形的面積可以表示成:
或
∴
這就驗證了兩數(shù)和的完全平方公式.
類比解決:
請你類比上述方法,利用圖形的幾何意義驗證平方差公式.
(要求畫出圖形并寫出推理過程)
問題提出:如何利用圖形幾何意義的方法證明?
如圖所示,表示1個1×1的正方形,即:,表示1個2×2的正方形,與恰好可以拼成1個2×2的正方形,因此:、、就可以表示2個2×2的正方形,即:而、、、恰好可以拼成一個的大正方形.
由此可得:.
嘗試解決:
請你類比上述推導過程,利用圖形的幾何意義確定:_______.(要求寫出結論并構造圖形寫出推證過程).
問題拓廣:
請用上面的表示幾何圖形面積的方法探究:_______.(直接寫出結論即可,不必寫出解題過程).
【答案】嘗試解決:;問題拓廣:.
【解析】
嘗試解決:根據(jù)規(guī)律可以利用相同的方法進行探究推證,由于是探究13+23+33=?肯定構成大正方形有9個基本圖形(3個正方形6個長方形)組成,如圖所示可以推證.
實際應用:根據(jù)規(guī)律求大正方體中含有多少個正方體,可以轉化為13+23+33+…+n3=(1+2+3+…+n)2來求得.
嘗試解決:
如圖,A表示1個1×1的正方形,即1×1×1=13;
B表示1個2×2的正方形,C與D恰好可以拼成1個2×2的正方形,
因此B. C. D就可以拼成2個2×2的正方形,即:2×2×2=23;
G與H、E與F和I可以拼成3個3×3的正方形,即:3×3×3=33;
而整個圖形恰好可以拼成一個(1+2+3)×(1+2+3)的大正方形,
因此可得:13+23+33=(1+2+3)2=62.
故答案為:(1+2+3)2或62.
問題拓廣:由上探究可知,13+23+33+…+n3=(1+2+3+…+n)2,
又∵1+2+3+…+n=
∴13+23+33+…+n3==
故答案為:
科目:初中數(shù)學 來源: 題型:
【題目】已知∠AED=∠C,∠1+∠2=180°.請說明∠BEC=∠FGC
解:因為∠AED=∠C(已知),
所以________∥_______(_________________________________ )
得∠1=∠3( _______________________________ )
又∠1+∠2=180°(已知),
得∠3+∠2=180°(___________________________)
所以_______∥_______
所以∠BEC=∠FGC(___________________________)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將含30°角的直角三角尺ABC繞點B順時針旋轉150°后得到△EBD,連接CD.若AB=4cm.則△BCD的面積為( 。
A. 4 B. 2 C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知⊙O是△ABC的外接圓,AB是⊙O的直徑,D是AB延長線上一點,AE⊥DC交DC的延長線于點E,且AC平分∠EAB.
(1)求證:DE是⊙O的切線;
(2)若AB=6,AE=,求BD和BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC內(nèi)接于⊙O,∠BAC的平分線交⊙O于點D,交BC于點E(BE>EC),且BD=2.過點D作DF∥BC,交AB的延長線于點F.
(1)求證:DF為⊙O的切線;
(2)若∠BAC=60°,DE=,求圖中陰影部分的面積;
(3)若,DF+BF=8,如圖2,求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC的三個頂點坐標為A(3,4),B(2,0),C(8,0).
(1)請畫出△ABC關于坐標原點O的中心對稱圖形△A′B′C′,并寫出點A的對應點A′的坐標 ;
(2)請直接寫出:以A、B、C為頂點的平行四邊形的第四個頂點D的坐標 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D、E、F分別是各邊的中點,BH是AC邊上的高.
(1)求證:四邊形DBEF是平行四邊形;(2)求證:∠DFE=∠DHE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:方程組的解x為非正數(shù),y為負數(shù).
(1)求a的取值范圍;
(2)化簡|a-3|+|a+2|;
(3)在a的取值范圍中,當a為何整數(shù)時,不等式2ax+x>2a+1的解為x<1.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】要從甲、乙兩名同學中選出一名,代表班級參加射擊比賽. 現(xiàn)將甲、乙兩名同學參加射擊訓練的成績繪制成下列兩個統(tǒng)計圖:
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
平均成績(環(huán)) | 中位數(shù)(環(huán)) | 眾數(shù)(環(huán)) | 方差() | |
甲 | 7 | 7 | 1. 2 | |
乙 | 7. 5 | 4. 2 |
(1)分別求表格中、、的值.
(2)如果其他參賽選手的射擊成績都在7環(huán)左右,應該選______隊員參賽更適合;如果其他參賽選手的射擊成績都在8環(huán)左右,應該選______隊員參賽更適合.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com