【題目】如圖,已知BC是⊙O的直徑,點(diǎn)A,D在⊙O上,∠B=2CAD,在BC的延長線上有一點(diǎn)P,使得∠PACB,弦AD交直徑BC于點(diǎn)E

(1)求證:DP與⊙O相切;

(2)判斷DCE的形狀,并證明你的結(jié)論;

(3)若CE=2,DE,求線段BC的長度.

【答案】(1)證明見解析;(2)DCE是等腰三角形,證明見解析;(3)10.

【解析】

(1)連接OD,根據(jù)圓周角定理得到∠DOP=2DAC,等量代換得到∠COD=B,根據(jù)圓周角定理得到∠BAC=90°,根據(jù)切線的判定定理即可得到結(jié)論;

(2)根據(jù)圓周角定理和三角形的內(nèi)角和即可得到結(jié)論;

(3)根據(jù)相似三角形的性質(zhì)得到,于是得到OC==5,即可得到結(jié)論.

(1)連接OD,

∴∠DOP2DAC

∵∠B2CAD,

∴∠COD=∠B,

∵∠P=∠ACB,

∴∠ODP=∠BAC

BC是⊙O的直徑,

∴∠BAC90°,

∴∠ODP90°,

DP與⊙O相切;

2DCE是等腰三角形,

理由:∵∠B=∠COD,∠BOD180°﹣∠COD,∠BAD+AEB180°﹣∠B

∴∠BOD=∠BAD+AEB,

∵∠BADBOD,

∴∠AEBBOD,

∴∠BAD=∠AEB,

∵∠DCE=∠BAE,∠CED=∠AEB,

∴∠CED=∠DCE

∴△DCE是等腰三角形;

3)∵OCOD,

∴∠OCD=∠ODC,

DEDC,

∴∠OCD=∠CED,

∴∠DEC=∠DCE=∠OCD=∠ODC,

∴△DCE∽△OCD,

,

CE=2,DE,

CDDE,

OC5

BC2OC10

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是梯形ABCD的內(nèi)切圓,ABDC,E、M、F、N分別是邊AB、BC、CD、DA上的切點(diǎn).

(1)求證:AB+CD=AD+BC

(2)求∠AOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列結(jié)論:①a,b同號(hào);②當(dāng)x=1和x=3時(shí),函數(shù)值相等;③4a+b=0;④當(dāng)﹣1<x<5時(shí),y<0.其中正確的有(  )

A. ①② B. ②③ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),決定開放以下球類活動(dòng)項(xiàng)目:A.籃球、B.乒乓球、C.排球、D.足球.為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖(如圖,圖),請回答下列問題:

1)這次被調(diào)查的學(xué)生共有多少人?

2)請你將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)若該校共有學(xué)生1900人,請你估計(jì)該校喜歡D項(xiàng)目的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2+bx+ca≠0)的圖象如圖,下列結(jié)論中,正確結(jié)論的有(  )個(gè)

b2﹣4ac>0;abc>0;8a+c>0;9a+3b+c<0.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊長為21m、寬為10m的矩形空地,計(jì)劃在其中修建兩塊相同的矩形綠地,兩塊綠地之間及周邊留有寬度相等的人行通道,且人行通道的寬度不能超過3米.

(1)如果兩塊綠地的面積之和為90m2,求人行通道的寬度;

(2)能否改變?nèi)诵型ǖ赖膶挾,使得每塊綠地的寬與長之比等于3:5,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為積極響應(yīng)市委政府“加快建設(shè)天藍(lán)水碧地綠的美麗長沙”的號(hào)召,我市某街道決定從備選的五種樹中選購一種進(jìn)行栽種.為了更好地了解社情民意,工作人員在街道轄區(qū)范圍內(nèi)隨機(jī)抽取了部分居民,進(jìn)行“我最喜歡的一種樹”的調(diào)查活動(dòng)(每人限選其中一種樹),并將調(diào)查結(jié)果整理后,繪制成如圖兩個(gè)不完整的統(tǒng)計(jì)圖:

請根據(jù)所給信息解答以下問題:

(1)這次參與調(diào)查的居民人數(shù)為:   ;

(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)請計(jì)算扇形統(tǒng)計(jì)圖中“楓樹”所在扇形的圓心角度數(shù);

(4)已知該街道轄區(qū)內(nèi)現(xiàn)有居民8萬人,請你估計(jì)這8萬人中最喜歡玉蘭樹的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正△ABC的頂點(diǎn)B(﹣3,0)、C(﹣1,0),過坐標(biāo)原點(diǎn)O的一條直線分別與邊AB、AC交于點(diǎn)M、N.若OM=2ON,則點(diǎn)N的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果商場經(jīng)銷一種高檔水果,如果每千克盈利元,每天可售出千克.經(jīng)市場調(diào)查發(fā)現(xiàn),出售價(jià)格每降低元,日銷售量將增加千克.那么每千克應(yīng)降價(jià)多少元,銷售該水果每天可獲得最大利潤?最大利潤是多少元?

查看答案和解析>>

同步練習(xí)冊答案