如圖,要焊接一個高為3.5m,底角為32°的人字形鋼架(等腰三角形),約需多長的鋼材?(精確到0.01m)
考點:解直角三角形的應(yīng)用
專題:
分析:利用銳角三角函數(shù)關(guān)系分別得出AC,AD的長,進(jìn)而求出即可.
解答:解:如圖所示:DC=3.5,∠A=∠B=32°,
故sin32°=
CD
AC
,
∴AC=DC÷sin32°≈6.605(m),
tan32°=
CD
AD
,
故AD=CD÷tan32°≈5.601(m),
則AB=11.202m,
故AC+BC+CD+AB=11.202+13.21+3.5≈27.91(m).
答:約需27.91m的鋼材.
點評:此題主要考查了解直角三角形的應(yīng)用,熟練應(yīng)用銳角三角函數(shù)關(guān)系是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

根據(jù)專家估計,開縣漢豐湖蓄水量約為8000萬立方米,下列說法正確的是( 。
A、精確到個位,有一個有效數(shù)字
B、精確到萬位,有四個有效數(shù)字
C、精確到千位,有四個有效數(shù)字
D、精確到百位,有一個有效數(shù)字

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知y=ax2+bx+c中,a<0,拋物線與x軸有交點A(2,0)和B(-1,0),求ax2+bx+c>0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

當(dāng)x+1>0時,方程|x+1|=4可化為一元一次方程,它的解為x=
 
;當(dāng)x+1<0時,方程|x+1|=4的解為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,正方形EFGH的兩個頂點E、F在BC上,另兩個頂點G、H分別在AC,AB上,BC=15cm,BC邊上的高是10cm,則正方形的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

函數(shù)y=(kx-1)(x-3),當(dāng)k為何值時,y是x的一次函數(shù)?當(dāng)k為何值時,y是x的二次函數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O1與y軸切于點C(0,-2),與x軸負(fù)半軸交于A、B兩點,A(-1,0),雙曲線y=
k
x
過點O,點P在雙曲線上,PE⊥x軸,垂足為E,求△PEO的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察二次函數(shù)y=ax2+bx+c的圖象.你認(rèn)為其中錯誤的是( 。
A、a<0
B、c=0
C、函數(shù)的最小值為-3
D、當(dāng)x<0時,y>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知?ABCD中,E是AB邊上一點,且AE:EB=1:2,F(xiàn)是AD中點,則EO:OC=
 

查看答案和解析>>

同步練習(xí)冊答案